![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqer | GIF version |
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
eqer.2 | ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵} |
Ref | Expression |
---|---|
eqer | ⊢ 𝑅 Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . . 5 ⊢ 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵} | |
2 | 1 | relopabi 4754 | . . . 4 ⊢ Rel 𝑅 |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel 𝑅) |
4 | id 19 | . . . . . 6 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
5 | 4 | eqcomd 2183 | . . . . 5 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
6 | eqer.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
7 | 6, 1 | eqerlem 6568 | . . . . 5 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
8 | 6, 1 | eqerlem 6568 | . . . . 5 ⊢ (𝑤𝑅𝑧 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
9 | 5, 7, 8 | 3imtr4i 201 | . . . 4 ⊢ (𝑧𝑅𝑤 → 𝑤𝑅𝑧) |
10 | 9 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑧𝑅𝑤) → 𝑤𝑅𝑧) |
11 | eqtr 2195 | . . . . 5 ⊢ ((⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) | |
12 | 6, 1 | eqerlem 6568 | . . . . . 6 ⊢ (𝑤𝑅𝑣 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
13 | 7, 12 | anbi12i 460 | . . . . 5 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) ↔ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴)) |
14 | 6, 1 | eqerlem 6568 | . . . . 5 ⊢ (𝑧𝑅𝑣 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
15 | 11, 13, 14 | 3imtr4i 201 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) → 𝑧𝑅𝑣) |
16 | 15 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣)) → 𝑧𝑅𝑣) |
17 | vex 2742 | . . . . 5 ⊢ 𝑧 ∈ V | |
18 | eqid 2177 | . . . . . 6 ⊢ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 | |
19 | 6, 1 | eqerlem 6568 | . . . . . 6 ⊢ (𝑧𝑅𝑧 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
20 | 18, 19 | mpbir 146 | . . . . 5 ⊢ 𝑧𝑅𝑧 |
21 | 17, 20 | 2th 174 | . . . 4 ⊢ (𝑧 ∈ V ↔ 𝑧𝑅𝑧) |
22 | 21 | a1i 9 | . . 3 ⊢ (⊤ → (𝑧 ∈ V ↔ 𝑧𝑅𝑧)) |
23 | 3, 10, 16, 22 | iserd 6563 | . 2 ⊢ (⊤ → 𝑅 Er V) |
24 | 23 | mptru 1362 | 1 ⊢ 𝑅 Er V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ⊤wtru 1354 ∈ wcel 2148 Vcvv 2739 ⦋csb 3059 class class class wbr 4005 {copab 4065 Rel wrel 4633 Er wer 6534 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-sbc 2965 df-csb 3060 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-br 4006 df-opab 4067 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-er 6537 |
This theorem is referenced by: ider 6570 |
Copyright terms: Public domain | W3C validator |