| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqer | GIF version | ||
| Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) |
| Ref | Expression |
|---|---|
| eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| eqer.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} |
| Ref | Expression |
|---|---|
| eqer | ⊢ 𝑅 Er V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqer.2 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | |
| 2 | 1 | relopabi 4847 | . . . 4 ⊢ Rel 𝑅 |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel 𝑅) |
| 4 | id 19 | . . . . . 6 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
| 5 | 4 | eqcomd 2235 | . . . . 5 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 6 | eqer.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 7 | 6, 1 | eqerlem 6719 | . . . . 5 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
| 8 | 6, 1 | eqerlem 6719 | . . . . 5 ⊢ (𝑤𝑅𝑧 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 9 | 5, 7, 8 | 3imtr4i 201 | . . . 4 ⊢ (𝑧𝑅𝑤 → 𝑤𝑅𝑧) |
| 10 | 9 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑧𝑅𝑤) → 𝑤𝑅𝑧) |
| 11 | eqtr 2247 | . . . . 5 ⊢ ((⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) | |
| 12 | 6, 1 | eqerlem 6719 | . . . . . 6 ⊢ (𝑤𝑅𝑣 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
| 13 | 7, 12 | anbi12i 460 | . . . . 5 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) ↔ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴)) |
| 14 | 6, 1 | eqerlem 6719 | . . . . 5 ⊢ (𝑧𝑅𝑣 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
| 15 | 11, 13, 14 | 3imtr4i 201 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) → 𝑧𝑅𝑣) |
| 16 | 15 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣)) → 𝑧𝑅𝑣) |
| 17 | vex 2802 | . . . . 5 ⊢ 𝑧 ∈ V | |
| 18 | eqid 2229 | . . . . . 6 ⊢ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 | |
| 19 | 6, 1 | eqerlem 6719 | . . . . . 6 ⊢ (𝑧𝑅𝑧 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
| 20 | 18, 19 | mpbir 146 | . . . . 5 ⊢ 𝑧𝑅𝑧 |
| 21 | 17, 20 | 2th 174 | . . . 4 ⊢ (𝑧 ∈ V ↔ 𝑧𝑅𝑧) |
| 22 | 21 | a1i 9 | . . 3 ⊢ (⊤ → (𝑧 ∈ V ↔ 𝑧𝑅𝑧)) |
| 23 | 3, 10, 16, 22 | iserd 6714 | . 2 ⊢ (⊤ → 𝑅 Er V) |
| 24 | 23 | mptru 1404 | 1 ⊢ 𝑅 Er V |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ⊤wtru 1396 ∈ wcel 2200 Vcvv 2799 ⦋csb 3124 class class class wbr 4083 {copab 4144 Rel wrel 4724 Er wer 6685 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-csb 3125 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-er 6688 |
| This theorem is referenced by: ider 6721 |
| Copyright terms: Public domain | W3C validator |