Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eqer | GIF version |
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
eqer.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} |
Ref | Expression |
---|---|
eqer | ⊢ 𝑅 Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | |
2 | 1 | relopabi 4737 | . . . 4 ⊢ Rel 𝑅 |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel 𝑅) |
4 | id 19 | . . . . . 6 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
5 | 4 | eqcomd 2176 | . . . . 5 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
6 | eqer.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
7 | 6, 1 | eqerlem 6544 | . . . . 5 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
8 | 6, 1 | eqerlem 6544 | . . . . 5 ⊢ (𝑤𝑅𝑧 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
9 | 5, 7, 8 | 3imtr4i 200 | . . . 4 ⊢ (𝑧𝑅𝑤 → 𝑤𝑅𝑧) |
10 | 9 | adantl 275 | . . 3 ⊢ ((⊤ ∧ 𝑧𝑅𝑤) → 𝑤𝑅𝑧) |
11 | eqtr 2188 | . . . . 5 ⊢ ((⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) | |
12 | 6, 1 | eqerlem 6544 | . . . . . 6 ⊢ (𝑤𝑅𝑣 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
13 | 7, 12 | anbi12i 457 | . . . . 5 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) ↔ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴)) |
14 | 6, 1 | eqerlem 6544 | . . . . 5 ⊢ (𝑧𝑅𝑣 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
15 | 11, 13, 14 | 3imtr4i 200 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) → 𝑧𝑅𝑣) |
16 | 15 | adantl 275 | . . 3 ⊢ ((⊤ ∧ (𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣)) → 𝑧𝑅𝑣) |
17 | vex 2733 | . . . . 5 ⊢ 𝑧 ∈ V | |
18 | eqid 2170 | . . . . . 6 ⊢ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 | |
19 | 6, 1 | eqerlem 6544 | . . . . . 6 ⊢ (𝑧𝑅𝑧 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
20 | 18, 19 | mpbir 145 | . . . . 5 ⊢ 𝑧𝑅𝑧 |
21 | 17, 20 | 2th 173 | . . . 4 ⊢ (𝑧 ∈ V ↔ 𝑧𝑅𝑧) |
22 | 21 | a1i 9 | . . 3 ⊢ (⊤ → (𝑧 ∈ V ↔ 𝑧𝑅𝑧)) |
23 | 3, 10, 16, 22 | iserd 6539 | . 2 ⊢ (⊤ → 𝑅 Er V) |
24 | 23 | mptru 1357 | 1 ⊢ 𝑅 Er V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ⊤wtru 1349 ∈ wcel 2141 Vcvv 2730 ⦋csb 3049 class class class wbr 3989 {copab 4049 Rel wrel 4616 Er wer 6510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-er 6513 |
This theorem is referenced by: ider 6546 |
Copyright terms: Public domain | W3C validator |