![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqer | GIF version |
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
eqer.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} |
Ref | Expression |
---|---|
eqer | ⊢ 𝑅 Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | |
2 | 1 | relopabi 4593 | . . . 4 ⊢ Rel 𝑅 |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel 𝑅) |
4 | id 19 | . . . . . 6 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
5 | 4 | eqcomd 2100 | . . . . 5 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
6 | eqer.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
7 | 6, 1 | eqerlem 6363 | . . . . 5 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
8 | 6, 1 | eqerlem 6363 | . . . . 5 ⊢ (𝑤𝑅𝑧 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
9 | 5, 7, 8 | 3imtr4i 200 | . . . 4 ⊢ (𝑧𝑅𝑤 → 𝑤𝑅𝑧) |
10 | 9 | adantl 272 | . . 3 ⊢ ((⊤ ∧ 𝑧𝑅𝑤) → 𝑤𝑅𝑧) |
11 | eqtr 2112 | . . . . 5 ⊢ ((⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) | |
12 | 6, 1 | eqerlem 6363 | . . . . . 6 ⊢ (𝑤𝑅𝑣 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
13 | 7, 12 | anbi12i 449 | . . . . 5 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) ↔ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴)) |
14 | 6, 1 | eqerlem 6363 | . . . . 5 ⊢ (𝑧𝑅𝑣 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
15 | 11, 13, 14 | 3imtr4i 200 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) → 𝑧𝑅𝑣) |
16 | 15 | adantl 272 | . . 3 ⊢ ((⊤ ∧ (𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣)) → 𝑧𝑅𝑣) |
17 | vex 2636 | . . . . 5 ⊢ 𝑧 ∈ V | |
18 | eqid 2095 | . . . . . 6 ⊢ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 | |
19 | 6, 1 | eqerlem 6363 | . . . . . 6 ⊢ (𝑧𝑅𝑧 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
20 | 18, 19 | mpbir 145 | . . . . 5 ⊢ 𝑧𝑅𝑧 |
21 | 17, 20 | 2th 173 | . . . 4 ⊢ (𝑧 ∈ V ↔ 𝑧𝑅𝑧) |
22 | 21 | a1i 9 | . . 3 ⊢ (⊤ → (𝑧 ∈ V ↔ 𝑧𝑅𝑧)) |
23 | 3, 10, 16, 22 | iserd 6358 | . 2 ⊢ (⊤ → 𝑅 Er V) |
24 | 23 | mptru 1305 | 1 ⊢ 𝑅 Er V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1296 ⊤wtru 1297 ∈ wcel 1445 Vcvv 2633 ⦋csb 2947 class class class wbr 3867 {copab 3920 Rel wrel 4472 Er wer 6329 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ral 2375 df-rex 2376 df-v 2635 df-sbc 2855 df-csb 2948 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-xp 4473 df-rel 4474 df-cnv 4475 df-co 4476 df-dm 4477 df-er 6332 |
This theorem is referenced by: ider 6365 |
Copyright terms: Public domain | W3C validator |