ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eqer GIF version

Theorem eqer 6682
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypotheses
Ref Expression
eqer.1 (𝑥 = 𝑦𝐴 = 𝐵)
eqer.2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
Assertion
Ref Expression
eqer 𝑅 Er V
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑥,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem eqer
Dummy variables 𝑤 𝑧 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqer.2 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝐴 = 𝐵}
21relopabi 4824 . . . 4 Rel 𝑅
32a1i 9 . . 3 (⊤ → Rel 𝑅)
4 id 19 . . . . . 6 (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
54eqcomd 2215 . . . . 5 (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
6 eqer.1 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝐵)
76, 1eqerlem 6681 . . . . 5 (𝑧𝑅𝑤𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴)
86, 1eqerlem 6681 . . . . 5 (𝑤𝑅𝑧𝑤 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
95, 7, 83imtr4i 201 . . . 4 (𝑧𝑅𝑤𝑤𝑅𝑧)
109adantl 277 . . 3 ((⊤ ∧ 𝑧𝑅𝑤) → 𝑤𝑅𝑧)
11 eqtr 2227 . . . . 5 ((𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴) → 𝑧 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
126, 1eqerlem 6681 . . . . . 6 (𝑤𝑅𝑣𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
137, 12anbi12i 460 . . . . 5 ((𝑧𝑅𝑤𝑤𝑅𝑣) ↔ (𝑧 / 𝑥𝐴 = 𝑤 / 𝑥𝐴𝑤 / 𝑥𝐴 = 𝑣 / 𝑥𝐴))
146, 1eqerlem 6681 . . . . 5 (𝑧𝑅𝑣𝑧 / 𝑥𝐴 = 𝑣 / 𝑥𝐴)
1511, 13, 143imtr4i 201 . . . 4 ((𝑧𝑅𝑤𝑤𝑅𝑣) → 𝑧𝑅𝑣)
1615adantl 277 . . 3 ((⊤ ∧ (𝑧𝑅𝑤𝑤𝑅𝑣)) → 𝑧𝑅𝑣)
17 vex 2782 . . . . 5 𝑧 ∈ V
18 eqid 2209 . . . . . 6 𝑧 / 𝑥𝐴 = 𝑧 / 𝑥𝐴
196, 1eqerlem 6681 . . . . . 6 (𝑧𝑅𝑧𝑧 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
2018, 19mpbir 146 . . . . 5 𝑧𝑅𝑧
2117, 202th 174 . . . 4 (𝑧 ∈ V ↔ 𝑧𝑅𝑧)
2221a1i 9 . . 3 (⊤ → (𝑧 ∈ V ↔ 𝑧𝑅𝑧))
233, 10, 16, 22iserd 6676 . 2 (⊤ → 𝑅 Er V)
2423mptru 1384 1 𝑅 Er V
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wtru 1376  wcel 2180  Vcvv 2779  csb 3104   class class class wbr 4062  {copab 4123  Rel wrel 4701   Er wer 6647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ral 2493  df-rex 2494  df-v 2781  df-sbc 3009  df-csb 3105  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-br 4063  df-opab 4125  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-er 6650
This theorem is referenced by:  ider  6683
  Copyright terms: Public domain W3C validator