![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqer | GIF version |
Description: Equivalence relation involving equality of dependent classes 𝐴(𝑥) and 𝐵(𝑦). (Contributed by NM, 17-Mar-2008.) (Revised by Mario Carneiro, 12-Aug-2015.) |
Ref | Expression |
---|---|
eqer.1 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
eqer.2 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} |
Ref | Expression |
---|---|
eqer | ⊢ 𝑅 Er V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqer.2 | . . . . 5 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝐴 = 𝐵} | |
2 | 1 | relopabi 4787 | . . . 4 ⊢ Rel 𝑅 |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → Rel 𝑅) |
4 | id 19 | . . . . . 6 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) | |
5 | 4 | eqcomd 2199 | . . . . 5 ⊢ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 → ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
6 | eqer.1 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
7 | 6, 1 | eqerlem 6618 | . . . . 5 ⊢ (𝑧𝑅𝑤 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴) |
8 | 6, 1 | eqerlem 6618 | . . . . 5 ⊢ (𝑤𝑅𝑧 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
9 | 5, 7, 8 | 3imtr4i 201 | . . . 4 ⊢ (𝑧𝑅𝑤 → 𝑤𝑅𝑧) |
10 | 9 | adantl 277 | . . 3 ⊢ ((⊤ ∧ 𝑧𝑅𝑤) → 𝑤𝑅𝑧) |
11 | eqtr 2211 | . . . . 5 ⊢ ((⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) → ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) | |
12 | 6, 1 | eqerlem 6618 | . . . . . 6 ⊢ (𝑤𝑅𝑣 ↔ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
13 | 7, 12 | anbi12i 460 | . . . . 5 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) ↔ (⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑤 / 𝑥⦌𝐴 ∧ ⦋𝑤 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴)) |
14 | 6, 1 | eqerlem 6618 | . . . . 5 ⊢ (𝑧𝑅𝑣 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑣 / 𝑥⦌𝐴) |
15 | 11, 13, 14 | 3imtr4i 201 | . . . 4 ⊢ ((𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣) → 𝑧𝑅𝑣) |
16 | 15 | adantl 277 | . . 3 ⊢ ((⊤ ∧ (𝑧𝑅𝑤 ∧ 𝑤𝑅𝑣)) → 𝑧𝑅𝑣) |
17 | vex 2763 | . . . . 5 ⊢ 𝑧 ∈ V | |
18 | eqid 2193 | . . . . . 6 ⊢ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴 | |
19 | 6, 1 | eqerlem 6618 | . . . . . 6 ⊢ (𝑧𝑅𝑧 ↔ ⦋𝑧 / 𝑥⦌𝐴 = ⦋𝑧 / 𝑥⦌𝐴) |
20 | 18, 19 | mpbir 146 | . . . . 5 ⊢ 𝑧𝑅𝑧 |
21 | 17, 20 | 2th 174 | . . . 4 ⊢ (𝑧 ∈ V ↔ 𝑧𝑅𝑧) |
22 | 21 | a1i 9 | . . 3 ⊢ (⊤ → (𝑧 ∈ V ↔ 𝑧𝑅𝑧)) |
23 | 3, 10, 16, 22 | iserd 6613 | . 2 ⊢ (⊤ → 𝑅 Er V) |
24 | 23 | mptru 1373 | 1 ⊢ 𝑅 Er V |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 Vcvv 2760 ⦋csb 3080 class class class wbr 4029 {copab 4089 Rel wrel 4664 Er wer 6584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-csb 3081 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-er 6587 |
This theorem is referenced by: ider 6620 |
Copyright terms: Public domain | W3C validator |