Step | Hyp | Ref
| Expression |
1 | | relen 6710 |
. . . 4
⊢ Rel
≈ |
2 | 1 | a1i 9 |
. . 3
⊢ (⊤
→ Rel ≈ ) |
3 | | bren 6713 |
. . . . 5
⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) |
4 | | f1ocnv 5445 |
. . . . . . 7
⊢ (𝑓:𝑥–1-1-onto→𝑦 → ◡𝑓:𝑦–1-1-onto→𝑥) |
5 | | vex 2729 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
6 | | vex 2729 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
7 | | f1oen2g 6721 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ ◡𝑓:𝑦–1-1-onto→𝑥) → 𝑦 ≈ 𝑥) |
8 | 5, 6, 7 | mp3an12 1317 |
. . . . . . 7
⊢ (◡𝑓:𝑦–1-1-onto→𝑥 → 𝑦 ≈ 𝑥) |
9 | 4, 8 | syl 14 |
. . . . . 6
⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
10 | 9 | exlimiv 1586 |
. . . . 5
⊢
(∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
11 | 3, 10 | sylbi 120 |
. . . 4
⊢ (𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥) |
12 | 11 | adantl 275 |
. . 3
⊢
((⊤ ∧ 𝑥
≈ 𝑦) → 𝑦 ≈ 𝑥) |
13 | | bren 6713 |
. . . . 5
⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1-onto→𝑦) |
14 | | bren 6713 |
. . . . 5
⊢ (𝑦 ≈ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) |
15 | | eeanv 1920 |
. . . . . 6
⊢
(∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧)) |
16 | | f1oco 5455 |
. . . . . . . . 9
⊢ ((𝑓:𝑦–1-1-onto→𝑧 ∧ 𝑔:𝑥–1-1-onto→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) |
17 | 16 | ancoms 266 |
. . . . . . . 8
⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) |
18 | | vex 2729 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
19 | | f1oen2g 6721 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
20 | 6, 18, 19 | mp3an12 1317 |
. . . . . . . 8
⊢ ((𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧 → 𝑥 ≈ 𝑧) |
21 | 17, 20 | syl 14 |
. . . . . . 7
⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
22 | 21 | exlimivv 1884 |
. . . . . 6
⊢
(∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
23 | 15, 22 | sylbir 134 |
. . . . 5
⊢
((∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
24 | 13, 14, 23 | syl2anb 289 |
. . . 4
⊢ ((𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧) → 𝑥 ≈ 𝑧) |
25 | 24 | adantl 275 |
. . 3
⊢
((⊤ ∧ (𝑥
≈ 𝑦 ∧ 𝑦 ≈ 𝑧)) → 𝑥 ≈ 𝑧) |
26 | 6 | enref 6731 |
. . . . 5
⊢ 𝑥 ≈ 𝑥 |
27 | 6, 26 | 2th 173 |
. . . 4
⊢ (𝑥 ∈ V ↔ 𝑥 ≈ 𝑥) |
28 | 27 | a1i 9 |
. . 3
⊢ (⊤
→ (𝑥 ∈ V ↔
𝑥 ≈ 𝑥)) |
29 | 2, 12, 25, 28 | iserd 6527 |
. 2
⊢ (⊤
→ ≈ Er V) |
30 | 29 | mptru 1352 |
1
⊢ ≈
Er V |