ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ener GIF version

Theorem ener 6681
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
ener ≈ Er V

Proof of Theorem ener
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 6646 . . . 4 Rel ≈
21a1i 9 . . 3 (⊤ → Rel ≈ )
3 bren 6649 . . . . 5 (𝑥𝑦 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑦)
4 f1ocnv 5388 . . . . . . 7 (𝑓:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑥)
5 vex 2692 . . . . . . . 8 𝑦 ∈ V
6 vex 2692 . . . . . . . 8 𝑥 ∈ V
7 f1oen2g 6657 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ 𝑓:𝑦1-1-onto𝑥) → 𝑦𝑥)
85, 6, 7mp3an12 1306 . . . . . . 7 (𝑓:𝑦1-1-onto𝑥𝑦𝑥)
94, 8syl 14 . . . . . 6 (𝑓:𝑥1-1-onto𝑦𝑦𝑥)
109exlimiv 1578 . . . . 5 (∃𝑓 𝑓:𝑥1-1-onto𝑦𝑦𝑥)
113, 10sylbi 120 . . . 4 (𝑥𝑦𝑦𝑥)
1211adantl 275 . . 3 ((⊤ ∧ 𝑥𝑦) → 𝑦𝑥)
13 bren 6649 . . . . 5 (𝑥𝑦 ↔ ∃𝑔 𝑔:𝑥1-1-onto𝑦)
14 bren 6649 . . . . 5 (𝑦𝑧 ↔ ∃𝑓 𝑓:𝑦1-1-onto𝑧)
15 eeanv 1905 . . . . . 6 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) ↔ (∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧))
16 f1oco 5398 . . . . . . . . 9 ((𝑓:𝑦1-1-onto𝑧𝑔:𝑥1-1-onto𝑦) → (𝑓𝑔):𝑥1-1-onto𝑧)
1716ancoms 266 . . . . . . . 8 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → (𝑓𝑔):𝑥1-1-onto𝑧)
18 vex 2692 . . . . . . . . 9 𝑧 ∈ V
19 f1oen2g 6657 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓𝑔):𝑥1-1-onto𝑧) → 𝑥𝑧)
206, 18, 19mp3an12 1306 . . . . . . . 8 ((𝑓𝑔):𝑥1-1-onto𝑧𝑥𝑧)
2117, 20syl 14 . . . . . . 7 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2221exlimivv 1869 . . . . . 6 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2315, 22sylbir 134 . . . . 5 ((∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2413, 14, 23syl2anb 289 . . . 4 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
2524adantl 275 . . 3 ((⊤ ∧ (𝑥𝑦𝑦𝑧)) → 𝑥𝑧)
266enref 6667 . . . . 5 𝑥𝑥
276, 262th 173 . . . 4 (𝑥 ∈ V ↔ 𝑥𝑥)
2827a1i 9 . . 3 (⊤ → (𝑥 ∈ V ↔ 𝑥𝑥))
292, 12, 25, 28iserd 6463 . 2 (⊤ → ≈ Er V)
3029mptru 1341 1 ≈ Er V
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wtru 1333  wex 1469  wcel 1481  Vcvv 2689   class class class wbr 3937  ccnv 4546  ccom 4551  Rel wrel 4552  1-1-ontowf1o 5130   Er wer 6434  cen 6640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-v 2691  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-er 6437  df-en 6643
This theorem is referenced by:  ensymb  6682  entr  6686
  Copyright terms: Public domain W3C validator