ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ener GIF version

Theorem ener 6745
Description: Equinumerosity is an equivalence relation. (Contributed by NM, 19-Mar-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
ener ≈ Er V

Proof of Theorem ener
Dummy variables 𝑓 𝑔 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relen 6710 . . . 4 Rel ≈
21a1i 9 . . 3 (⊤ → Rel ≈ )
3 bren 6713 . . . . 5 (𝑥𝑦 ↔ ∃𝑓 𝑓:𝑥1-1-onto𝑦)
4 f1ocnv 5445 . . . . . . 7 (𝑓:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑥)
5 vex 2729 . . . . . . . 8 𝑦 ∈ V
6 vex 2729 . . . . . . . 8 𝑥 ∈ V
7 f1oen2g 6721 . . . . . . . 8 ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ 𝑓:𝑦1-1-onto𝑥) → 𝑦𝑥)
85, 6, 7mp3an12 1317 . . . . . . 7 (𝑓:𝑦1-1-onto𝑥𝑦𝑥)
94, 8syl 14 . . . . . 6 (𝑓:𝑥1-1-onto𝑦𝑦𝑥)
109exlimiv 1586 . . . . 5 (∃𝑓 𝑓:𝑥1-1-onto𝑦𝑦𝑥)
113, 10sylbi 120 . . . 4 (𝑥𝑦𝑦𝑥)
1211adantl 275 . . 3 ((⊤ ∧ 𝑥𝑦) → 𝑦𝑥)
13 bren 6713 . . . . 5 (𝑥𝑦 ↔ ∃𝑔 𝑔:𝑥1-1-onto𝑦)
14 bren 6713 . . . . 5 (𝑦𝑧 ↔ ∃𝑓 𝑓:𝑦1-1-onto𝑧)
15 eeanv 1920 . . . . . 6 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) ↔ (∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧))
16 f1oco 5455 . . . . . . . . 9 ((𝑓:𝑦1-1-onto𝑧𝑔:𝑥1-1-onto𝑦) → (𝑓𝑔):𝑥1-1-onto𝑧)
1716ancoms 266 . . . . . . . 8 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → (𝑓𝑔):𝑥1-1-onto𝑧)
18 vex 2729 . . . . . . . . 9 𝑧 ∈ V
19 f1oen2g 6721 . . . . . . . . 9 ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓𝑔):𝑥1-1-onto𝑧) → 𝑥𝑧)
206, 18, 19mp3an12 1317 . . . . . . . 8 ((𝑓𝑔):𝑥1-1-onto𝑧𝑥𝑧)
2117, 20syl 14 . . . . . . 7 ((𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2221exlimivv 1884 . . . . . 6 (∃𝑔𝑓(𝑔:𝑥1-1-onto𝑦𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2315, 22sylbir 134 . . . . 5 ((∃𝑔 𝑔:𝑥1-1-onto𝑦 ∧ ∃𝑓 𝑓:𝑦1-1-onto𝑧) → 𝑥𝑧)
2413, 14, 23syl2anb 289 . . . 4 ((𝑥𝑦𝑦𝑧) → 𝑥𝑧)
2524adantl 275 . . 3 ((⊤ ∧ (𝑥𝑦𝑦𝑧)) → 𝑥𝑧)
266enref 6731 . . . . 5 𝑥𝑥
276, 262th 173 . . . 4 (𝑥 ∈ V ↔ 𝑥𝑥)
2827a1i 9 . . 3 (⊤ → (𝑥 ∈ V ↔ 𝑥𝑥))
292, 12, 25, 28iserd 6527 . 2 (⊤ → ≈ Er V)
3029mptru 1352 1 ≈ Er V
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wtru 1344  wex 1480  wcel 2136  Vcvv 2726   class class class wbr 3982  ccnv 4603  ccom 4608  Rel wrel 4609  1-1-ontowf1o 5187   Er wer 6498  cen 6704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-er 6501  df-en 6707
This theorem is referenced by:  ensymb  6746  entr  6750
  Copyright terms: Public domain W3C validator