| Step | Hyp | Ref
| Expression |
| 1 | | relen 6812 |
. . . 4
⊢ Rel
≈ |
| 2 | 1 | a1i 9 |
. . 3
⊢ (⊤
→ Rel ≈ ) |
| 3 | | bren 6815 |
. . . . 5
⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑓 𝑓:𝑥–1-1-onto→𝑦) |
| 4 | | f1ocnv 5520 |
. . . . . . 7
⊢ (𝑓:𝑥–1-1-onto→𝑦 → ◡𝑓:𝑦–1-1-onto→𝑥) |
| 5 | | vex 2766 |
. . . . . . . 8
⊢ 𝑦 ∈ V |
| 6 | | vex 2766 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 7 | | f1oen2g 6823 |
. . . . . . . 8
⊢ ((𝑦 ∈ V ∧ 𝑥 ∈ V ∧ ◡𝑓:𝑦–1-1-onto→𝑥) → 𝑦 ≈ 𝑥) |
| 8 | 5, 6, 7 | mp3an12 1338 |
. . . . . . 7
⊢ (◡𝑓:𝑦–1-1-onto→𝑥 → 𝑦 ≈ 𝑥) |
| 9 | 4, 8 | syl 14 |
. . . . . 6
⊢ (𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
| 10 | 9 | exlimiv 1612 |
. . . . 5
⊢
(∃𝑓 𝑓:𝑥–1-1-onto→𝑦 → 𝑦 ≈ 𝑥) |
| 11 | 3, 10 | sylbi 121 |
. . . 4
⊢ (𝑥 ≈ 𝑦 → 𝑦 ≈ 𝑥) |
| 12 | 11 | adantl 277 |
. . 3
⊢
((⊤ ∧ 𝑥
≈ 𝑦) → 𝑦 ≈ 𝑥) |
| 13 | | bren 6815 |
. . . . 5
⊢ (𝑥 ≈ 𝑦 ↔ ∃𝑔 𝑔:𝑥–1-1-onto→𝑦) |
| 14 | | bren 6815 |
. . . . 5
⊢ (𝑦 ≈ 𝑧 ↔ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) |
| 15 | | eeanv 1951 |
. . . . . 6
⊢
(∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) ↔ (∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧)) |
| 16 | | f1oco 5530 |
. . . . . . . . 9
⊢ ((𝑓:𝑦–1-1-onto→𝑧 ∧ 𝑔:𝑥–1-1-onto→𝑦) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) |
| 17 | 16 | ancoms 268 |
. . . . . . . 8
⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) |
| 18 | | vex 2766 |
. . . . . . . . 9
⊢ 𝑧 ∈ V |
| 19 | | f1oen2g 6823 |
. . . . . . . . 9
⊢ ((𝑥 ∈ V ∧ 𝑧 ∈ V ∧ (𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 20 | 6, 18, 19 | mp3an12 1338 |
. . . . . . . 8
⊢ ((𝑓 ∘ 𝑔):𝑥–1-1-onto→𝑧 → 𝑥 ≈ 𝑧) |
| 21 | 17, 20 | syl 14 |
. . . . . . 7
⊢ ((𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 22 | 21 | exlimivv 1911 |
. . . . . 6
⊢
(∃𝑔∃𝑓(𝑔:𝑥–1-1-onto→𝑦 ∧ 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 23 | 15, 22 | sylbir 135 |
. . . . 5
⊢
((∃𝑔 𝑔:𝑥–1-1-onto→𝑦 ∧ ∃𝑓 𝑓:𝑦–1-1-onto→𝑧) → 𝑥 ≈ 𝑧) |
| 24 | 13, 14, 23 | syl2anb 291 |
. . . 4
⊢ ((𝑥 ≈ 𝑦 ∧ 𝑦 ≈ 𝑧) → 𝑥 ≈ 𝑧) |
| 25 | 24 | adantl 277 |
. . 3
⊢
((⊤ ∧ (𝑥
≈ 𝑦 ∧ 𝑦 ≈ 𝑧)) → 𝑥 ≈ 𝑧) |
| 26 | 6 | enref 6833 |
. . . . 5
⊢ 𝑥 ≈ 𝑥 |
| 27 | 6, 26 | 2th 174 |
. . . 4
⊢ (𝑥 ∈ V ↔ 𝑥 ≈ 𝑥) |
| 28 | 27 | a1i 9 |
. . 3
⊢ (⊤
→ (𝑥 ∈ V ↔
𝑥 ≈ 𝑥)) |
| 29 | 2, 12, 25, 28 | iserd 6627 |
. 2
⊢ (⊤
→ ≈ Er V) |
| 30 | 29 | mptru 1373 |
1
⊢ ≈
Er V |