ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd GIF version

Theorem fo2nd 6161
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :Vā€“ontoā†’V

Proof of Theorem fo2nd
Dummy variables š‘„ š‘¦ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2742 . . . . . 6 š‘„ āˆˆ V
21snex 4187 . . . . 5 {š‘„} āˆˆ V
32rnex 4896 . . . 4 ran {š‘„} āˆˆ V
43uniex 4439 . . 3 āˆŖ ran {š‘„} āˆˆ V
5 df-2nd 6144 . . 3 2nd = (š‘„ āˆˆ V ā†¦ āˆŖ ran {š‘„})
64, 5fnmpti 5346 . 2 2nd Fn V
75rnmpt 4877 . . 3 ran 2nd = {š‘¦ āˆ£ āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„}}
8 vex 2742 . . . . 5 š‘¦ āˆˆ V
98, 8opex 4231 . . . . . 6 āŸØš‘¦, š‘¦āŸ© āˆˆ V
108, 8op2nda 5115 . . . . . . 7 āˆŖ ran {āŸØš‘¦, š‘¦āŸ©} = š‘¦
1110eqcomi 2181 . . . . . 6 š‘¦ = āˆŖ ran {āŸØš‘¦, š‘¦āŸ©}
12 sneq 3605 . . . . . . . . . 10 (š‘„ = āŸØš‘¦, š‘¦āŸ© ā†’ {š‘„} = {āŸØš‘¦, š‘¦āŸ©})
1312rneqd 4858 . . . . . . . . 9 (š‘„ = āŸØš‘¦, š‘¦āŸ© ā†’ ran {š‘„} = ran {āŸØš‘¦, š‘¦āŸ©})
1413unieqd 3822 . . . . . . . 8 (š‘„ = āŸØš‘¦, š‘¦āŸ© ā†’ āˆŖ ran {š‘„} = āˆŖ ran {āŸØš‘¦, š‘¦āŸ©})
1514eqeq2d 2189 . . . . . . 7 (š‘„ = āŸØš‘¦, š‘¦āŸ© ā†’ (š‘¦ = āˆŖ ran {š‘„} ā†” š‘¦ = āˆŖ ran {āŸØš‘¦, š‘¦āŸ©}))
1615rspcev 2843 . . . . . 6 ((āŸØš‘¦, š‘¦āŸ© āˆˆ V āˆ§ š‘¦ = āˆŖ ran {āŸØš‘¦, š‘¦āŸ©}) ā†’ āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„})
179, 11, 16mp2an 426 . . . . 5 āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„}
188, 172th 174 . . . 4 (š‘¦ āˆˆ V ā†” āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„})
1918abbi2i 2292 . . 3 V = {š‘¦ āˆ£ āˆƒš‘„ āˆˆ V š‘¦ = āˆŖ ran {š‘„}}
207, 19eqtr4i 2201 . 2 ran 2nd = V
21 df-fo 5224 . 2 (2nd :Vā€“ontoā†’V ā†” (2nd Fn V āˆ§ ran 2nd = V))
226, 20, 21mpbir2an 942 1 2nd :Vā€“ontoā†’V
Colors of variables: wff set class
Syntax hints:   = wceq 1353   āˆˆ wcel 2148  {cab 2163  āˆƒwrex 2456  Vcvv 2739  {csn 3594  āŸØcop 3597  āˆŖ cuni 3811  ran crn 4629   Fn wfn 5213  ā€“ontoā†’wfo 5216  2nd c2nd 6142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-fun 5220  df-fn 5221  df-fo 5224  df-2nd 6144
This theorem is referenced by:  2ndcof  6167  2ndexg  6171  df2nd2  6223  2ndconst  6225  suplocexprlemmu  7719  suplocexprlemdisj  7721  suplocexprlemloc  7722  suplocexprlemub  7724  upxp  13811  uptx  13813  cnmpt2nd  13828
  Copyright terms: Public domain W3C validator