![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fo2nd | GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ⊢ 2nd :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2623 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snex 4026 | . . . . 5 ⊢ {𝑥} ∈ V |
3 | 2 | rnex 4713 | . . . 4 ⊢ ran {𝑥} ∈ V |
4 | 3 | uniex 4273 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
5 | df-2nd 5926 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
6 | 4, 5 | fnmpti 5155 | . 2 ⊢ 2nd Fn V |
7 | 5 | rnmpt 4696 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
8 | vex 2623 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 8, 8 | opex 4065 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
10 | 8, 8 | op2nda 4928 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
11 | 10 | eqcomi 2093 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
12 | sneq 3461 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
13 | 12 | rneqd 4677 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
14 | 13 | unieqd 3670 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
15 | 14 | eqeq2d 2100 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ ran {𝑥} ↔ 𝑦 = ∪ ran {〈𝑦, 𝑦〉})) |
16 | 15 | rspcev 2723 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
17 | 9, 11, 16 | mp2an 418 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
18 | 8, 17 | 2th 173 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
19 | 18 | abbi2i 2203 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
20 | 7, 19 | eqtr4i 2112 | . 2 ⊢ ran 2nd = V |
21 | df-fo 5034 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
22 | 6, 20, 21 | mpbir2an 889 | 1 ⊢ 2nd :V–onto→V |
Colors of variables: wff set class |
Syntax hints: = wceq 1290 ∈ wcel 1439 {cab 2075 ∃wrex 2361 Vcvv 2620 {csn 3450 〈cop 3453 ∪ cuni 3659 ran crn 4453 Fn wfn 5023 –onto→wfo 5026 2nd c2nd 5924 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-13 1450 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-un 4269 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ral 2365 df-rex 2366 df-v 2622 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-mpt 3907 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-rn 4463 df-fun 5030 df-fn 5031 df-fo 5034 df-2nd 5926 |
This theorem is referenced by: 2ndcof 5949 2ndexg 5953 df2nd2 5999 2ndconst 6001 |
Copyright terms: Public domain | W3C validator |