| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo2nd | GIF version | ||
| Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo2nd | ⊢ 2nd :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2782 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snex 4248 | . . . . 5 ⊢ {𝑥} ∈ V |
| 3 | 2 | rnex 4968 | . . . 4 ⊢ ran {𝑥} ∈ V |
| 4 | 3 | uniex 4505 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
| 5 | df-2nd 6257 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 6 | 4, 5 | fnmpti 5428 | . 2 ⊢ 2nd Fn V |
| 7 | 5 | rnmpt 4948 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 8 | vex 2782 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 8, 8 | opex 4294 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
| 10 | 8, 8 | op2nda 5189 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
| 11 | 10 | eqcomi 2213 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
| 12 | sneq 3657 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 13 | 12 | rneqd 4929 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
| 14 | 13 | unieqd 3878 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
| 15 | 14 | eqeq2d 2221 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ ran {𝑥} ↔ 𝑦 = ∪ ran {〈𝑦, 𝑦〉})) |
| 16 | 15 | rspcev 2887 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
| 18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 19 | 18 | abbi2i 2324 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 20 | 7, 19 | eqtr4i 2233 | . 2 ⊢ ran 2nd = V |
| 21 | df-fo 5300 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
| 22 | 6, 20, 21 | mpbir2an 947 | 1 ⊢ 2nd :V–onto→V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 {cab 2195 ∃wrex 2489 Vcvv 2779 {csn 3646 〈cop 3649 ∪ cuni 3867 ran crn 4697 Fn wfn 5289 –onto→wfo 5292 2nd c2nd 6255 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-fun 5296 df-fn 5297 df-fo 5300 df-2nd 6257 |
| This theorem is referenced by: 2ndcof 6280 2ndexg 6284 df2nd2 6336 2ndconst 6338 suplocexprlemmu 7873 suplocexprlemdisj 7875 suplocexprlemloc 7876 suplocexprlemub 7878 upxp 14911 uptx 14913 cnmpt2nd 14928 |
| Copyright terms: Public domain | W3C validator |