ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd GIF version

Theorem fo2nd 6213
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2763 . . . . . 6 𝑥 ∈ V
21snex 4215 . . . . 5 {𝑥} ∈ V
32rnex 4930 . . . 4 ran {𝑥} ∈ V
43uniex 4469 . . 3 ran {𝑥} ∈ V
5 df-2nd 6196 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
64, 5fnmpti 5383 . 2 2nd Fn V
75rnmpt 4911 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
8 vex 2763 . . . . 5 𝑦 ∈ V
98, 8opex 4259 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op2nda 5151 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2197 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
12 sneq 3630 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312rneqd 4892 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413unieqd 3847 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1514eqeq2d 2205 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = ran {𝑥} ↔ 𝑦 = ran {⟨𝑦, 𝑦⟩}))
1615rspcev 2865 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
179, 11, 16mp2an 426 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
188, 172th 174 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1918abbi2i 2308 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
207, 19eqtr4i 2217 . 2 ran 2nd = V
21 df-fo 5261 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
226, 20, 21mpbir2an 944 1 2nd :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2164  {cab 2179  wrex 2473  Vcvv 2760  {csn 3619  cop 3622   cuni 3836  ran crn 4661   Fn wfn 5250  ontowfo 5253  2nd c2nd 6194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-fun 5257  df-fn 5258  df-fo 5261  df-2nd 6196
This theorem is referenced by:  2ndcof  6219  2ndexg  6223  df2nd2  6275  2ndconst  6277  suplocexprlemmu  7780  suplocexprlemdisj  7782  suplocexprlemloc  7783  suplocexprlemub  7785  upxp  14451  uptx  14453  cnmpt2nd  14468
  Copyright terms: Public domain W3C validator