ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd GIF version

Theorem fo2nd 6216
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2766 . . . . . 6 𝑥 ∈ V
21snex 4218 . . . . 5 {𝑥} ∈ V
32rnex 4933 . . . 4 ran {𝑥} ∈ V
43uniex 4472 . . 3 ran {𝑥} ∈ V
5 df-2nd 6199 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
64, 5fnmpti 5386 . 2 2nd Fn V
75rnmpt 4914 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
8 vex 2766 . . . . 5 𝑦 ∈ V
98, 8opex 4262 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op2nda 5154 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2200 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
12 sneq 3633 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312rneqd 4895 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413unieqd 3850 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1514eqeq2d 2208 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = ran {𝑥} ↔ 𝑦 = ran {⟨𝑦, 𝑦⟩}))
1615rspcev 2868 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
179, 11, 16mp2an 426 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
188, 172th 174 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1918abbi2i 2311 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
207, 19eqtr4i 2220 . 2 ran 2nd = V
21 df-fo 5264 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
226, 20, 21mpbir2an 944 1 2nd :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  {cab 2182  wrex 2476  Vcvv 2763  {csn 3622  cop 3625   cuni 3839  ran crn 4664   Fn wfn 5253  ontowfo 5256  2nd c2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-fun 5260  df-fn 5261  df-fo 5264  df-2nd 6199
This theorem is referenced by:  2ndcof  6222  2ndexg  6226  df2nd2  6278  2ndconst  6280  suplocexprlemmu  7785  suplocexprlemdisj  7787  suplocexprlemloc  7788  suplocexprlemub  7790  upxp  14508  uptx  14510  cnmpt2nd  14525
  Copyright terms: Public domain W3C validator