Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fo2nd | GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ⊢ 2nd :V–onto→V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2738 | . . . . . 6 ⊢ 𝑥 ∈ V | |
2 | 1 | snex 4180 | . . . . 5 ⊢ {𝑥} ∈ V |
3 | 2 | rnex 4887 | . . . 4 ⊢ ran {𝑥} ∈ V |
4 | 3 | uniex 4431 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
5 | df-2nd 6132 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
6 | 4, 5 | fnmpti 5336 | . 2 ⊢ 2nd Fn V |
7 | 5 | rnmpt 4868 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
8 | vex 2738 | . . . . 5 ⊢ 𝑦 ∈ V | |
9 | 8, 8 | opex 4223 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
10 | 8, 8 | op2nda 5105 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
11 | 10 | eqcomi 2179 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
12 | sneq 3600 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
13 | 12 | rneqd 4849 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
14 | 13 | unieqd 3816 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
15 | 14 | eqeq2d 2187 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ ran {𝑥} ↔ 𝑦 = ∪ ran {〈𝑦, 𝑦〉})) |
16 | 15 | rspcev 2839 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
19 | 18 | abbi2i 2290 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
20 | 7, 19 | eqtr4i 2199 | . 2 ⊢ ran 2nd = V |
21 | df-fo 5214 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
22 | 6, 20, 21 | mpbir2an 942 | 1 ⊢ 2nd :V–onto→V |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2146 {cab 2161 ∃wrex 2454 Vcvv 2735 {csn 3589 〈cop 3592 ∪ cuni 3805 ran crn 4621 Fn wfn 5203 –onto→wfo 5206 2nd c2nd 6130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-fun 5210 df-fn 5211 df-fo 5214 df-2nd 6132 |
This theorem is referenced by: 2ndcof 6155 2ndexg 6159 df2nd2 6211 2ndconst 6213 suplocexprlemmu 7692 suplocexprlemdisj 7694 suplocexprlemloc 7695 suplocexprlemub 7697 upxp 13352 uptx 13354 cnmpt2nd 13369 |
Copyright terms: Public domain | W3C validator |