![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fo2nd | GIF version |
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
fo2nd | ā¢ 2nd :VāontoāV |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2742 | . . . . . 6 ā¢ š„ ā V | |
2 | 1 | snex 4187 | . . . . 5 ā¢ {š„} ā V |
3 | 2 | rnex 4896 | . . . 4 ā¢ ran {š„} ā V |
4 | 3 | uniex 4439 | . . 3 ā¢ āŖ ran {š„} ā V |
5 | df-2nd 6144 | . . 3 ā¢ 2nd = (š„ ā V ā¦ āŖ ran {š„}) | |
6 | 4, 5 | fnmpti 5346 | . 2 ā¢ 2nd Fn V |
7 | 5 | rnmpt 4877 | . . 3 ā¢ ran 2nd = {š¦ ā£ āš„ ā V š¦ = āŖ ran {š„}} |
8 | vex 2742 | . . . . 5 ā¢ š¦ ā V | |
9 | 8, 8 | opex 4231 | . . . . . 6 ā¢ āØš¦, š¦ā© ā V |
10 | 8, 8 | op2nda 5115 | . . . . . . 7 ā¢ āŖ ran {āØš¦, š¦ā©} = š¦ |
11 | 10 | eqcomi 2181 | . . . . . 6 ā¢ š¦ = āŖ ran {āØš¦, š¦ā©} |
12 | sneq 3605 | . . . . . . . . . 10 ā¢ (š„ = āØš¦, š¦ā© ā {š„} = {āØš¦, š¦ā©}) | |
13 | 12 | rneqd 4858 | . . . . . . . . 9 ā¢ (š„ = āØš¦, š¦ā© ā ran {š„} = ran {āØš¦, š¦ā©}) |
14 | 13 | unieqd 3822 | . . . . . . . 8 ā¢ (š„ = āØš¦, š¦ā© ā āŖ ran {š„} = āŖ ran {āØš¦, š¦ā©}) |
15 | 14 | eqeq2d 2189 | . . . . . . 7 ā¢ (š„ = āØš¦, š¦ā© ā (š¦ = āŖ ran {š„} ā š¦ = āŖ ran {āØš¦, š¦ā©})) |
16 | 15 | rspcev 2843 | . . . . . 6 ā¢ ((āØš¦, š¦ā© ā V ā§ š¦ = āŖ ran {āØš¦, š¦ā©}) ā āš„ ā V š¦ = āŖ ran {š„}) |
17 | 9, 11, 16 | mp2an 426 | . . . . 5 ā¢ āš„ ā V š¦ = āŖ ran {š„} |
18 | 8, 17 | 2th 174 | . . . 4 ā¢ (š¦ ā V ā āš„ ā V š¦ = āŖ ran {š„}) |
19 | 18 | abbi2i 2292 | . . 3 ā¢ V = {š¦ ā£ āš„ ā V š¦ = āŖ ran {š„}} |
20 | 7, 19 | eqtr4i 2201 | . 2 ā¢ ran 2nd = V |
21 | df-fo 5224 | . 2 ā¢ (2nd :VāontoāV ā (2nd Fn V ā§ ran 2nd = V)) | |
22 | 6, 20, 21 | mpbir2an 942 | 1 ā¢ 2nd :VāontoāV |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ā wcel 2148 {cab 2163 āwrex 2456 Vcvv 2739 {csn 3594 āØcop 3597 āŖ cuni 3811 ran crn 4629 Fn wfn 5213 āontoāwfo 5216 2nd c2nd 6142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-v 2741 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-fun 5220 df-fn 5221 df-fo 5224 df-2nd 6144 |
This theorem is referenced by: 2ndcof 6167 2ndexg 6171 df2nd2 6223 2ndconst 6225 suplocexprlemmu 7719 suplocexprlemdisj 7721 suplocexprlemloc 7722 suplocexprlemub 7724 upxp 13811 uptx 13813 cnmpt2nd 13828 |
Copyright terms: Public domain | W3C validator |