| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fo2nd | GIF version | ||
| Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| fo2nd | ⊢ 2nd :V–onto→V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2776 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 2 | 1 | snex 4233 | . . . . 5 ⊢ {𝑥} ∈ V |
| 3 | 2 | rnex 4951 | . . . 4 ⊢ ran {𝑥} ∈ V |
| 4 | 3 | uniex 4488 | . . 3 ⊢ ∪ ran {𝑥} ∈ V |
| 5 | df-2nd 6234 | . . 3 ⊢ 2nd = (𝑥 ∈ V ↦ ∪ ran {𝑥}) | |
| 6 | 4, 5 | fnmpti 5410 | . 2 ⊢ 2nd Fn V |
| 7 | 5 | rnmpt 4931 | . . 3 ⊢ ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 8 | vex 2776 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 9 | 8, 8 | opex 4277 | . . . . . 6 ⊢ 〈𝑦, 𝑦〉 ∈ V |
| 10 | 8, 8 | op2nda 5172 | . . . . . . 7 ⊢ ∪ ran {〈𝑦, 𝑦〉} = 𝑦 |
| 11 | 10 | eqcomi 2210 | . . . . . 6 ⊢ 𝑦 = ∪ ran {〈𝑦, 𝑦〉} |
| 12 | sneq 3645 | . . . . . . . . . 10 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → {𝑥} = {〈𝑦, 𝑦〉}) | |
| 13 | 12 | rneqd 4912 | . . . . . . . . 9 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ran {𝑥} = ran {〈𝑦, 𝑦〉}) |
| 14 | 13 | unieqd 3863 | . . . . . . . 8 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → ∪ ran {𝑥} = ∪ ran {〈𝑦, 𝑦〉}) |
| 15 | 14 | eqeq2d 2218 | . . . . . . 7 ⊢ (𝑥 = 〈𝑦, 𝑦〉 → (𝑦 = ∪ ran {𝑥} ↔ 𝑦 = ∪ ran {〈𝑦, 𝑦〉})) |
| 16 | 15 | rspcev 2878 | . . . . . 6 ⊢ ((〈𝑦, 𝑦〉 ∈ V ∧ 𝑦 = ∪ ran {〈𝑦, 𝑦〉}) → ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 17 | 9, 11, 16 | mp2an 426 | . . . . 5 ⊢ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥} |
| 18 | 8, 17 | 2th 174 | . . . 4 ⊢ (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}) |
| 19 | 18 | abbi2i 2321 | . . 3 ⊢ V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ∪ ran {𝑥}} |
| 20 | 7, 19 | eqtr4i 2230 | . 2 ⊢ ran 2nd = V |
| 21 | df-fo 5282 | . 2 ⊢ (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V)) | |
| 22 | 6, 20, 21 | mpbir2an 945 | 1 ⊢ 2nd :V–onto→V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 {cab 2192 ∃wrex 2486 Vcvv 2773 {csn 3634 〈cop 3637 ∪ cuni 3852 ran crn 4680 Fn wfn 5271 –onto→wfo 5274 2nd c2nd 6232 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-fun 5278 df-fn 5279 df-fo 5282 df-2nd 6234 |
| This theorem is referenced by: 2ndcof 6257 2ndexg 6261 df2nd2 6313 2ndconst 6315 suplocexprlemmu 7838 suplocexprlemdisj 7840 suplocexprlemloc 7841 suplocexprlemub 7843 upxp 14788 uptx 14790 cnmpt2nd 14805 |
| Copyright terms: Public domain | W3C validator |