ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fo2nd GIF version

Theorem fo2nd 6251
Description: The 2nd function maps the universe onto the universe. (Contributed by NM, 14-Oct-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
fo2nd 2nd :V–onto→V

Proof of Theorem fo2nd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2776 . . . . . 6 𝑥 ∈ V
21snex 4233 . . . . 5 {𝑥} ∈ V
32rnex 4951 . . . 4 ran {𝑥} ∈ V
43uniex 4488 . . 3 ran {𝑥} ∈ V
5 df-2nd 6234 . . 3 2nd = (𝑥 ∈ V ↦ ran {𝑥})
64, 5fnmpti 5410 . 2 2nd Fn V
75rnmpt 4931 . . 3 ran 2nd = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
8 vex 2776 . . . . 5 𝑦 ∈ V
98, 8opex 4277 . . . . . 6 𝑦, 𝑦⟩ ∈ V
108, 8op2nda 5172 . . . . . . 7 ran {⟨𝑦, 𝑦⟩} = 𝑦
1110eqcomi 2210 . . . . . 6 𝑦 = ran {⟨𝑦, 𝑦⟩}
12 sneq 3645 . . . . . . . . . 10 (𝑥 = ⟨𝑦, 𝑦⟩ → {𝑥} = {⟨𝑦, 𝑦⟩})
1312rneqd 4912 . . . . . . . . 9 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1413unieqd 3863 . . . . . . . 8 (𝑥 = ⟨𝑦, 𝑦⟩ → ran {𝑥} = ran {⟨𝑦, 𝑦⟩})
1514eqeq2d 2218 . . . . . . 7 (𝑥 = ⟨𝑦, 𝑦⟩ → (𝑦 = ran {𝑥} ↔ 𝑦 = ran {⟨𝑦, 𝑦⟩}))
1615rspcev 2878 . . . . . 6 ((⟨𝑦, 𝑦⟩ ∈ V ∧ 𝑦 = ran {⟨𝑦, 𝑦⟩}) → ∃𝑥 ∈ V 𝑦 = ran {𝑥})
179, 11, 16mp2an 426 . . . . 5 𝑥 ∈ V 𝑦 = ran {𝑥}
188, 172th 174 . . . 4 (𝑦 ∈ V ↔ ∃𝑥 ∈ V 𝑦 = ran {𝑥})
1918abbi2i 2321 . . 3 V = {𝑦 ∣ ∃𝑥 ∈ V 𝑦 = ran {𝑥}}
207, 19eqtr4i 2230 . 2 ran 2nd = V
21 df-fo 5282 . 2 (2nd :V–onto→V ↔ (2nd Fn V ∧ ran 2nd = V))
226, 20, 21mpbir2an 945 1 2nd :V–onto→V
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  {cab 2192  wrex 2486  Vcvv 2773  {csn 3634  cop 3637   cuni 3852  ran crn 4680   Fn wfn 5271  ontowfo 5274  2nd c2nd 6232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-fun 5278  df-fn 5279  df-fo 5282  df-2nd 6234
This theorem is referenced by:  2ndcof  6257  2ndexg  6261  df2nd2  6313  2ndconst  6315  suplocexprlemmu  7838  suplocexprlemdisj  7840  suplocexprlemloc  7841  suplocexprlemub  7843  upxp  14788  uptx  14790  cnmpt2nd  14805
  Copyright terms: Public domain W3C validator