| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expa | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expa | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 256 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ad4ant123 1217 ad4ant124 1218 ad4ant134 1219 ad4ant234 1220 ad5ant123 1241 3anidm23 1308 mp3an2 1336 mpd3an3 1349 rgen3 2584 moi2 2945 sbc3ie 3063 preq12bg 3804 issod 4355 wepo 4395 reuhypd 4507 funimass4 5614 fvtp1g 5773 f1imass 5824 fcof1o 5839 f1ofveu 5913 f1ocnvfv3 5914 acexmid 5924 2ndrn 6250 frecrdg 6475 oawordriexmid 6537 mapxpen 6918 findcard 6958 findcard2 6959 findcard2s 6960 ltapig 7422 ltanqi 7486 ltmnqi 7487 lt2addnq 7488 lt2mulnq 7489 prarloclemcalc 7586 genpassl 7608 genpassu 7609 prmuloc 7650 ltexprlemm 7684 ltexprlemfl 7693 ltexprlemfu 7695 lteupri 7701 ltaprg 7703 mul4 8175 add4 8204 cnegexlem2 8219 cnegexlem3 8220 2addsub 8257 addsubeq4 8258 muladd 8427 ltleadd 8490 reapmul1 8639 apreim 8647 receuap 8713 p1le 8893 lemul12b 8905 lbinf 8992 zdiv 9431 fzind 9458 fnn0ind 9459 uzss 9639 qmulcl 9728 qreccl 9733 xrlttr 9887 xaddass 9961 icc0r 10018 iooshf 10044 elfz5 10109 elfz0fzfz0 10218 fzind2 10332 ioo0 10366 ico0 10368 ioc0 10369 expnegap0 10656 expineg2 10657 mulexpzap 10688 expsubap 10696 expnbnd 10772 facndiv 10848 bccmpl 10863 bcval5 10872 bcpasc 10875 crim 11040 climshftlemg 11484 2sumeq2dv 11553 hash2iun 11661 2cprodeq2dv 11750 dvdsval3 11973 dvdsnegb 11990 muldvds1 11998 muldvds2 11999 dvdscmul 12000 dvdsmulc 12001 dvds2ln 12006 divalgb 12107 ndvdssub 12112 gcddiv 12211 rpexp1i 12347 phiprmpw 12415 hashgcdeq 12433 pythagtriplem1 12459 pockthg 12551 infpnlem1 12553 4sqlem3 12584 imasaddfnlemg 13016 mndpfo 13140 grplmulf1o 13276 grplactcnv 13304 mulgnn0subcl 13341 mulgsubcl 13342 mulgdir 13360 issubg2m 13395 issubgrpd2 13396 nmzsubg 13416 eqgen 13433 ghmmulg 13462 ghmf1 13479 kerf1ghm 13480 conjghm 13482 srglmhm 13625 srgrmhm 13626 ringlghm 13693 ringrghm 13694 oppr1g 13714 dvdsrcl2 13731 crngunit 13743 subsubrng 13846 subrgugrp 13872 subsubrg 13877 islmod 13923 lmodvsdir 13944 lmodvsass 13945 lsssubg 14009 lss1d 14015 lidlsubg 14118 lidlsubcl 14119 expghmap 14239 mulgghm2 14240 innei 14483 iscnp4 14538 cnpnei 14539 cnnei 14552 cnconst 14554 ismeti 14666 isxmet2d 14668 elbl2ps 14712 elbl2 14713 xblpnfps 14718 xblpnf 14719 xblm 14737 blininf 14744 blssexps 14749 blssex 14750 blsscls2 14813 metss 14814 metrest 14826 metcn 14834 divcnap 14885 cdivcncfap 14924 dvply1 15085 lgslem4 15328 lgscllem 15332 lgsneg1 15350 lgsne0 15363 |
| Copyright terms: Public domain | W3C validator |