| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expa | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expa | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 256 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: ad4ant123 1217 ad4ant124 1218 ad4ant134 1219 ad4ant234 1220 ad5ant123 1241 3anidm23 1308 mp3an2 1336 mpd3an3 1349 rgen3 2584 moi2 2945 sbc3ie 3063 preq12bg 3804 issod 4355 wepo 4395 reuhypd 4507 funimass4 5614 fvtp1g 5773 f1imass 5824 fcof1o 5839 f1ofveu 5913 f1ocnvfv3 5914 acexmid 5924 2ndrn 6250 frecrdg 6475 oawordriexmid 6537 mapxpen 6918 findcard 6958 findcard2 6959 findcard2s 6960 ltapig 7424 ltanqi 7488 ltmnqi 7489 lt2addnq 7490 lt2mulnq 7491 prarloclemcalc 7588 genpassl 7610 genpassu 7611 prmuloc 7652 ltexprlemm 7686 ltexprlemfl 7695 ltexprlemfu 7697 lteupri 7703 ltaprg 7705 mul4 8177 add4 8206 cnegexlem2 8221 cnegexlem3 8222 2addsub 8259 addsubeq4 8260 muladd 8429 ltleadd 8492 reapmul1 8641 apreim 8649 receuap 8715 p1le 8895 lemul12b 8907 lbinf 8994 zdiv 9433 fzind 9460 fnn0ind 9461 uzss 9641 qmulcl 9730 qreccl 9735 xrlttr 9889 xaddass 9963 icc0r 10020 iooshf 10046 elfz5 10111 elfz0fzfz0 10220 fzind2 10334 ioo0 10368 ico0 10370 ioc0 10371 expnegap0 10658 expineg2 10659 mulexpzap 10690 expsubap 10698 expnbnd 10774 facndiv 10850 bccmpl 10865 bcval5 10874 bcpasc 10877 crim 11042 climshftlemg 11486 2sumeq2dv 11555 hash2iun 11663 2cprodeq2dv 11752 dvdsval3 11975 dvdsnegb 11992 muldvds1 12000 muldvds2 12001 dvdscmul 12002 dvdsmulc 12003 dvds2ln 12008 divalgb 12109 ndvdssub 12114 gcddiv 12213 rpexp1i 12349 phiprmpw 12417 hashgcdeq 12435 pythagtriplem1 12461 pockthg 12553 infpnlem1 12555 4sqlem3 12586 imasaddfnlemg 13018 mndpfo 13142 grplmulf1o 13278 grplactcnv 13306 mulgnn0subcl 13343 mulgsubcl 13344 mulgdir 13362 issubg2m 13397 issubgrpd2 13398 nmzsubg 13418 eqgen 13435 ghmmulg 13464 ghmf1 13481 kerf1ghm 13482 conjghm 13484 srglmhm 13627 srgrmhm 13628 ringlghm 13695 ringrghm 13696 oppr1g 13716 dvdsrcl2 13733 crngunit 13745 subsubrng 13848 subrgugrp 13874 subsubrg 13879 islmod 13925 lmodvsdir 13946 lmodvsass 13947 lsssubg 14011 lss1d 14017 lidlsubg 14120 lidlsubcl 14121 expghmap 14241 mulgghm2 14242 innei 14507 iscnp4 14562 cnpnei 14563 cnnei 14576 cnconst 14578 ismeti 14690 isxmet2d 14692 elbl2ps 14736 elbl2 14737 xblpnfps 14742 xblpnf 14743 xblm 14761 blininf 14768 blssexps 14773 blssex 14774 blsscls2 14837 metss 14838 metrest 14850 metcn 14858 divcnap 14909 cdivcncfap 14948 dvply1 15109 lgslem4 15352 lgscllem 15356 lgsneg1 15374 lgsne0 15387 |
| Copyright terms: Public domain | W3C validator |