![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3expa | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expa | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 256 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ad4ant123 1217 ad4ant124 1218 ad4ant134 1219 ad4ant234 1220 ad5ant123 1241 3anidm23 1308 mp3an2 1336 mpd3an3 1349 rgen3 2581 moi2 2942 sbc3ie 3060 preq12bg 3800 issod 4351 wepo 4391 reuhypd 4503 funimass4 5608 fvtp1g 5767 f1imass 5818 fcof1o 5833 f1ofveu 5907 f1ocnvfv3 5908 acexmid 5918 2ndrn 6238 frecrdg 6463 oawordriexmid 6525 mapxpen 6906 findcard 6946 findcard2 6947 findcard2s 6948 ltapig 7400 ltanqi 7464 ltmnqi 7465 lt2addnq 7466 lt2mulnq 7467 prarloclemcalc 7564 genpassl 7586 genpassu 7587 prmuloc 7628 ltexprlemm 7662 ltexprlemfl 7671 ltexprlemfu 7673 lteupri 7679 ltaprg 7681 mul4 8153 add4 8182 cnegexlem2 8197 cnegexlem3 8198 2addsub 8235 addsubeq4 8236 muladd 8405 ltleadd 8467 reapmul1 8616 apreim 8624 receuap 8690 p1le 8870 lemul12b 8882 lbinf 8969 zdiv 9408 fzind 9435 fnn0ind 9436 uzss 9616 qmulcl 9705 qreccl 9710 xrlttr 9864 xaddass 9938 icc0r 9995 iooshf 10021 elfz5 10086 elfz0fzfz0 10195 fzind2 10309 ioo0 10331 ico0 10333 ioc0 10334 expnegap0 10621 expineg2 10622 mulexpzap 10653 expsubap 10661 expnbnd 10737 facndiv 10813 bccmpl 10828 bcval5 10837 bcpasc 10840 crim 11005 climshftlemg 11448 2sumeq2dv 11517 hash2iun 11625 2cprodeq2dv 11714 dvdsval3 11937 dvdsnegb 11954 muldvds1 11962 muldvds2 11963 dvdscmul 11964 dvdsmulc 11965 dvds2ln 11970 divalgb 12069 ndvdssub 12074 gcddiv 12159 rpexp1i 12295 phiprmpw 12363 hashgcdeq 12380 pythagtriplem1 12406 pockthg 12498 infpnlem1 12500 4sqlem3 12531 imasaddfnlemg 12900 mndpfo 13022 grplmulf1o 13149 grplactcnv 13177 mulgnn0subcl 13208 mulgsubcl 13209 mulgdir 13227 issubg2m 13262 issubgrpd2 13263 nmzsubg 13283 eqgen 13300 ghmmulg 13329 ghmf1 13346 kerf1ghm 13347 conjghm 13349 srglmhm 13492 srgrmhm 13493 ringlghm 13560 ringrghm 13561 oppr1g 13581 dvdsrcl2 13598 crngunit 13610 subsubrng 13713 subrgugrp 13739 subsubrg 13744 islmod 13790 lmodvsdir 13811 lmodvsass 13812 lsssubg 13876 lss1d 13882 lidlsubg 13985 lidlsubcl 13986 expghmap 14106 mulgghm2 14107 innei 14342 iscnp4 14397 cnpnei 14398 cnnei 14411 cnconst 14413 ismeti 14525 isxmet2d 14527 elbl2ps 14571 elbl2 14572 xblpnfps 14577 xblpnf 14578 xblm 14596 blininf 14603 blssexps 14608 blssex 14609 blsscls2 14672 metss 14673 metrest 14685 metcn 14693 divcnap 14744 cdivcncfap 14783 dvply1 14943 lgslem4 15160 lgscllem 15164 lgsneg1 15182 lgsne0 15195 |
Copyright terms: Public domain | W3C validator |