Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3expa | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expa | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1192 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 254 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∧ w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: ad4ant123 1205 ad4ant124 1206 ad4ant134 1207 ad4ant234 1208 3anidm23 1287 mp3an2 1315 mpd3an3 1328 rgen3 2553 moi2 2907 sbc3ie 3024 preq12bg 3753 issod 4297 wepo 4337 reuhypd 4449 funimass4 5537 fvtp1g 5693 f1imass 5742 fcof1o 5757 f1ofveu 5830 f1ocnvfv3 5831 acexmid 5841 2ndrn 6151 frecrdg 6376 oawordriexmid 6438 mapxpen 6814 findcard 6854 findcard2 6855 findcard2s 6856 ltapig 7279 ltanqi 7343 ltmnqi 7344 lt2addnq 7345 lt2mulnq 7346 prarloclemcalc 7443 genpassl 7465 genpassu 7466 prmuloc 7507 ltexprlemm 7541 ltexprlemfl 7550 ltexprlemfu 7552 lteupri 7558 ltaprg 7560 mul4 8030 add4 8059 cnegexlem2 8074 cnegexlem3 8075 2addsub 8112 addsubeq4 8113 muladd 8282 ltleadd 8344 reapmul1 8493 apreim 8501 receuap 8566 p1le 8744 lemul12b 8756 lbinf 8843 zdiv 9279 fzind 9306 fnn0ind 9307 uzss 9486 qmulcl 9575 qreccl 9580 xrlttr 9731 xaddass 9805 icc0r 9862 iooshf 9888 elfz5 9952 elfz0fzfz0 10061 fzind2 10174 ioo0 10195 ico0 10197 ioc0 10198 expnegap0 10463 expineg2 10464 mulexpzap 10495 expsubap 10503 expnbnd 10578 facndiv 10652 bccmpl 10667 bcval5 10676 bcpasc 10679 crim 10800 climshftlemg 11243 2sumeq2dv 11312 hash2iun 11420 2cprodeq2dv 11509 dvdsval3 11731 dvdsnegb 11748 muldvds1 11756 muldvds2 11757 dvdscmul 11758 dvdsmulc 11759 dvds2ln 11764 divalgb 11862 ndvdssub 11867 gcddiv 11952 rpexp1i 12086 phiprmpw 12154 hashgcdeq 12171 pythagtriplem1 12197 pockthg 12287 infpnlem1 12289 4sqlem3 12320 innei 12803 iscnp4 12858 cnpnei 12859 cnnei 12872 cnconst 12874 ismeti 12986 isxmet2d 12988 elbl2ps 13032 elbl2 13033 xblpnfps 13038 xblpnf 13039 xblm 13057 blininf 13064 blssexps 13069 blssex 13070 blsscls2 13133 metss 13134 metrest 13146 metcn 13154 divcnap 13195 cdivcncfap 13227 lgslem4 13544 lgscllem 13548 lgsneg1 13566 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |