Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3expa | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expa | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1202 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 256 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: ad4ant123 1215 ad4ant124 1216 ad4ant134 1217 ad4ant234 1218 3anidm23 1297 mp3an2 1325 mpd3an3 1338 rgen3 2562 moi2 2916 sbc3ie 3034 preq12bg 3769 issod 4313 wepo 4353 reuhypd 4465 funimass4 5558 fvtp1g 5716 f1imass 5765 fcof1o 5780 f1ofveu 5853 f1ocnvfv3 5854 acexmid 5864 2ndrn 6174 frecrdg 6399 oawordriexmid 6461 mapxpen 6838 findcard 6878 findcard2 6879 findcard2s 6880 ltapig 7312 ltanqi 7376 ltmnqi 7377 lt2addnq 7378 lt2mulnq 7379 prarloclemcalc 7476 genpassl 7498 genpassu 7499 prmuloc 7540 ltexprlemm 7574 ltexprlemfl 7583 ltexprlemfu 7585 lteupri 7591 ltaprg 7593 mul4 8063 add4 8092 cnegexlem2 8107 cnegexlem3 8108 2addsub 8145 addsubeq4 8146 muladd 8315 ltleadd 8377 reapmul1 8526 apreim 8534 receuap 8599 p1le 8777 lemul12b 8789 lbinf 8876 zdiv 9312 fzind 9339 fnn0ind 9340 uzss 9519 qmulcl 9608 qreccl 9613 xrlttr 9764 xaddass 9838 icc0r 9895 iooshf 9921 elfz5 9985 elfz0fzfz0 10094 fzind2 10207 ioo0 10228 ico0 10230 ioc0 10231 expnegap0 10496 expineg2 10497 mulexpzap 10528 expsubap 10536 expnbnd 10611 facndiv 10685 bccmpl 10700 bcval5 10709 bcpasc 10712 crim 10833 climshftlemg 11276 2sumeq2dv 11345 hash2iun 11453 2cprodeq2dv 11542 dvdsval3 11764 dvdsnegb 11781 muldvds1 11789 muldvds2 11790 dvdscmul 11791 dvdsmulc 11792 dvds2ln 11797 divalgb 11895 ndvdssub 11900 gcddiv 11985 rpexp1i 12119 phiprmpw 12187 hashgcdeq 12204 pythagtriplem1 12230 pockthg 12320 infpnlem1 12322 4sqlem3 12353 mndpfo 12703 grplmulf1o 12803 grplactcnv 12831 mulgnn0subcl 12855 mulgsubcl 12856 mulgdir 12873 srglmhm 12969 srgrmhm 12970 innei 13214 iscnp4 13269 cnpnei 13270 cnnei 13283 cnconst 13285 ismeti 13397 isxmet2d 13399 elbl2ps 13443 elbl2 13444 xblpnfps 13449 xblpnf 13450 xblm 13468 blininf 13475 blssexps 13480 blssex 13481 blsscls2 13544 metss 13545 metrest 13557 metcn 13565 divcnap 13606 cdivcncfap 13638 lgslem4 13955 lgscllem 13959 lgsneg1 13977 lgsne0 13990 |
Copyright terms: Public domain | W3C validator |