![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3expa | GIF version |
Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
3expa | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
2 | 1 | 3exp 1204 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | imp31 256 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 980 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: ad4ant123 1217 ad4ant124 1218 ad4ant134 1219 ad4ant234 1220 ad5ant123 1241 3anidm23 1308 mp3an2 1336 mpd3an3 1349 rgen3 2581 moi2 2941 sbc3ie 3059 preq12bg 3799 issod 4350 wepo 4390 reuhypd 4502 funimass4 5607 fvtp1g 5766 f1imass 5817 fcof1o 5832 f1ofveu 5906 f1ocnvfv3 5907 acexmid 5917 2ndrn 6236 frecrdg 6461 oawordriexmid 6523 mapxpen 6904 findcard 6944 findcard2 6945 findcard2s 6946 ltapig 7398 ltanqi 7462 ltmnqi 7463 lt2addnq 7464 lt2mulnq 7465 prarloclemcalc 7562 genpassl 7584 genpassu 7585 prmuloc 7626 ltexprlemm 7660 ltexprlemfl 7669 ltexprlemfu 7671 lteupri 7677 ltaprg 7679 mul4 8151 add4 8180 cnegexlem2 8195 cnegexlem3 8196 2addsub 8233 addsubeq4 8234 muladd 8403 ltleadd 8465 reapmul1 8614 apreim 8622 receuap 8688 p1le 8868 lemul12b 8880 lbinf 8967 zdiv 9405 fzind 9432 fnn0ind 9433 uzss 9613 qmulcl 9702 qreccl 9707 xrlttr 9861 xaddass 9935 icc0r 9992 iooshf 10018 elfz5 10083 elfz0fzfz0 10192 fzind2 10306 ioo0 10328 ico0 10330 ioc0 10331 expnegap0 10618 expineg2 10619 mulexpzap 10650 expsubap 10658 expnbnd 10734 facndiv 10810 bccmpl 10825 bcval5 10834 bcpasc 10837 crim 11002 climshftlemg 11445 2sumeq2dv 11514 hash2iun 11622 2cprodeq2dv 11711 dvdsval3 11934 dvdsnegb 11951 muldvds1 11959 muldvds2 11960 dvdscmul 11961 dvdsmulc 11962 dvds2ln 11967 divalgb 12066 ndvdssub 12071 gcddiv 12156 rpexp1i 12292 phiprmpw 12360 hashgcdeq 12377 pythagtriplem1 12403 pockthg 12495 infpnlem1 12497 4sqlem3 12528 imasaddfnlemg 12897 mndpfo 13019 grplmulf1o 13146 grplactcnv 13174 mulgnn0subcl 13205 mulgsubcl 13206 mulgdir 13224 issubg2m 13259 issubgrpd2 13260 nmzsubg 13280 eqgen 13297 ghmmulg 13326 ghmf1 13343 kerf1ghm 13344 conjghm 13346 srglmhm 13489 srgrmhm 13490 ringlghm 13557 ringrghm 13558 oppr1g 13578 dvdsrcl2 13595 crngunit 13607 subsubrng 13710 subrgugrp 13736 subsubrg 13741 islmod 13787 lmodvsdir 13808 lmodvsass 13809 lsssubg 13873 lss1d 13879 lidlsubg 13982 lidlsubcl 13983 expghmap 14095 mulgghm2 14096 innei 14331 iscnp4 14386 cnpnei 14387 cnnei 14400 cnconst 14402 ismeti 14514 isxmet2d 14516 elbl2ps 14560 elbl2 14561 xblpnfps 14566 xblpnf 14567 xblm 14585 blininf 14592 blssexps 14597 blssex 14598 blsscls2 14661 metss 14662 metrest 14674 metcn 14682 divcnap 14723 cdivcncfap 14758 lgslem4 15119 lgscllem 15123 lgsneg1 15141 lgsne0 15154 |
Copyright terms: Public domain | W3C validator |