| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expa | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expa | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1205 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 256 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ad4ant123 1218 ad4ant124 1219 ad4ant134 1220 ad4ant234 1221 ad5ant123 1242 3anidm23 1310 mp3an2 1338 mpd3an3 1351 rgen3 2595 moi2 2961 sbc3ie 3079 2if2dc 3619 preq12bg 3827 issod 4384 wepo 4424 reuhypd 4536 funimass4 5652 fvtp1g 5815 f1imass 5866 fcof1o 5881 f1ofveu 5955 f1ocnvfv3 5956 acexmid 5966 2ndrn 6292 frecrdg 6517 oawordriexmid 6579 mapxpen 6970 findcard 7011 findcard2 7012 findcard2s 7013 ltapig 7486 ltanqi 7550 ltmnqi 7551 lt2addnq 7552 lt2mulnq 7553 prarloclemcalc 7650 genpassl 7672 genpassu 7673 prmuloc 7714 ltexprlemm 7748 ltexprlemfl 7757 ltexprlemfu 7759 lteupri 7765 ltaprg 7767 mul4 8239 add4 8268 cnegexlem2 8283 cnegexlem3 8284 2addsub 8321 addsubeq4 8322 muladd 8491 ltleadd 8554 reapmul1 8703 apreim 8711 receuap 8777 p1le 8957 lemul12b 8969 lbinf 9056 zdiv 9496 fzind 9523 fnn0ind 9524 uzss 9704 qmulcl 9793 qreccl 9798 xrlttr 9952 xaddass 10026 icc0r 10083 iooshf 10109 elfz5 10174 elfz0fzfz0 10283 fzind2 10405 ioo0 10439 ico0 10441 ioc0 10442 expnegap0 10729 expineg2 10730 mulexpzap 10761 expsubap 10769 expnbnd 10845 facndiv 10921 bccmpl 10936 bcval5 10945 bcpasc 10948 ccatrn 11103 swrdspsleq 11158 swrdccat2 11162 ccatpfx 11192 pfxccat1 11193 swrdswrd 11196 cats1un 11212 crim 11284 climshftlemg 11728 2sumeq2dv 11797 hash2iun 11905 2cprodeq2dv 11994 dvdsval3 12217 dvdsnegb 12234 muldvds1 12242 muldvds2 12243 dvdscmul 12244 dvdsmulc 12245 dvds2ln 12250 divalgb 12351 ndvdssub 12356 gcddiv 12455 rpexp1i 12591 phiprmpw 12659 hashgcdeq 12677 pythagtriplem1 12703 pockthg 12795 infpnlem1 12797 4sqlem3 12828 imasaddfnlemg 13261 mndpfo 13385 grplmulf1o 13521 grplactcnv 13549 mulgnn0subcl 13586 mulgsubcl 13587 mulgdir 13605 issubg2m 13640 issubgrpd2 13641 nmzsubg 13661 eqgen 13678 ghmmulg 13707 ghmf1 13724 kerf1ghm 13725 conjghm 13727 srglmhm 13870 srgrmhm 13871 ringlghm 13938 ringrghm 13939 oppr1g 13959 dvdsrcl2 13976 crngunit 13988 subsubrng 14091 subrgugrp 14117 subsubrg 14122 islmod 14168 lmodvsdir 14189 lmodvsass 14190 lsssubg 14254 lss1d 14260 lidlsubg 14363 lidlsubcl 14364 expghmap 14484 mulgghm2 14485 innei 14750 iscnp4 14805 cnpnei 14806 cnnei 14819 cnconst 14821 ismeti 14933 isxmet2d 14935 elbl2ps 14979 elbl2 14980 xblpnfps 14985 xblpnf 14986 xblm 15004 blininf 15011 blssexps 15016 blssex 15017 blsscls2 15080 metss 15081 metrest 15093 metcn 15101 divcnap 15152 cdivcncfap 15191 dvply1 15352 lgslem4 15595 lgscllem 15599 lgsneg1 15617 lgsne0 15630 |
| Copyright terms: Public domain | W3C validator |