| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3expa | GIF version | ||
| Description: Exportation from triple to double conjunction. (Contributed by NM, 20-Aug-1995.) |
| Ref | Expression |
|---|---|
| 3exp.1 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| 3expa | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3exp.1 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
| 2 | 1 | 3exp 1205 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | imp31 256 | 1 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: ad4ant123 1218 ad4ant124 1219 ad4ant134 1220 ad4ant234 1221 ad5ant123 1242 3anidm23 1310 mp3an2 1338 mpd3an3 1351 rgen3 2593 moi2 2954 sbc3ie 3072 preq12bg 3814 issod 4366 wepo 4406 reuhypd 4518 funimass4 5629 fvtp1g 5792 f1imass 5843 fcof1o 5858 f1ofveu 5932 f1ocnvfv3 5933 acexmid 5943 2ndrn 6269 frecrdg 6494 oawordriexmid 6556 mapxpen 6945 findcard 6985 findcard2 6986 findcard2s 6987 ltapig 7451 ltanqi 7515 ltmnqi 7516 lt2addnq 7517 lt2mulnq 7518 prarloclemcalc 7615 genpassl 7637 genpassu 7638 prmuloc 7679 ltexprlemm 7713 ltexprlemfl 7722 ltexprlemfu 7724 lteupri 7730 ltaprg 7732 mul4 8204 add4 8233 cnegexlem2 8248 cnegexlem3 8249 2addsub 8286 addsubeq4 8287 muladd 8456 ltleadd 8519 reapmul1 8668 apreim 8676 receuap 8742 p1le 8922 lemul12b 8934 lbinf 9021 zdiv 9461 fzind 9488 fnn0ind 9489 uzss 9669 qmulcl 9758 qreccl 9763 xrlttr 9917 xaddass 9991 icc0r 10048 iooshf 10074 elfz5 10139 elfz0fzfz0 10248 fzind2 10368 ioo0 10402 ico0 10404 ioc0 10405 expnegap0 10692 expineg2 10693 mulexpzap 10724 expsubap 10732 expnbnd 10808 facndiv 10884 bccmpl 10899 bcval5 10908 bcpasc 10911 ccatrn 11065 swrdspsleq 11120 swrdccat2 11124 crim 11169 climshftlemg 11613 2sumeq2dv 11682 hash2iun 11790 2cprodeq2dv 11879 dvdsval3 12102 dvdsnegb 12119 muldvds1 12127 muldvds2 12128 dvdscmul 12129 dvdsmulc 12130 dvds2ln 12135 divalgb 12236 ndvdssub 12241 gcddiv 12340 rpexp1i 12476 phiprmpw 12544 hashgcdeq 12562 pythagtriplem1 12588 pockthg 12680 infpnlem1 12682 4sqlem3 12713 imasaddfnlemg 13146 mndpfo 13270 grplmulf1o 13406 grplactcnv 13434 mulgnn0subcl 13471 mulgsubcl 13472 mulgdir 13490 issubg2m 13525 issubgrpd2 13526 nmzsubg 13546 eqgen 13563 ghmmulg 13592 ghmf1 13609 kerf1ghm 13610 conjghm 13612 srglmhm 13755 srgrmhm 13756 ringlghm 13823 ringrghm 13824 oppr1g 13844 dvdsrcl2 13861 crngunit 13873 subsubrng 13976 subrgugrp 14002 subsubrg 14007 islmod 14053 lmodvsdir 14074 lmodvsass 14075 lsssubg 14139 lss1d 14145 lidlsubg 14248 lidlsubcl 14249 expghmap 14369 mulgghm2 14370 innei 14635 iscnp4 14690 cnpnei 14691 cnnei 14704 cnconst 14706 ismeti 14818 isxmet2d 14820 elbl2ps 14864 elbl2 14865 xblpnfps 14870 xblpnf 14871 xblm 14889 blininf 14896 blssexps 14901 blssex 14902 blsscls2 14965 metss 14966 metrest 14978 metcn 14986 divcnap 15037 cdivcncfap 15076 dvply1 15237 lgslem4 15480 lgscllem 15484 lgsneg1 15502 lgsne0 15515 |
| Copyright terms: Public domain | W3C validator |