Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > efrirr | GIF version |
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
efrirr | ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frirrg 4327 | . . . 4 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 E 𝐴) | |
2 | 1 | 3anidm23 1287 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 E 𝐴) |
3 | epelg 4267 | . . . 4 ⊢ (𝐴 ∈ 𝐴 → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
4 | 3 | adantl 275 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) |
5 | 2, 4 | mtbid 662 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) |
6 | 5 | pm2.01da 626 | 1 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2136 class class class wbr 3981 E cep 4264 Fr wfr 4305 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-v 2727 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-br 3982 df-opab 4043 df-eprel 4266 df-frfor 4308 df-frind 4309 |
This theorem is referenced by: tz7.2 4331 |
Copyright terms: Public domain | W3C validator |