| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efrirr | GIF version | ||
| Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
| Ref | Expression |
|---|---|
| efrirr | ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frirrg 4405 | . . . 4 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 E 𝐴) | |
| 2 | 1 | 3anidm23 1310 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 E 𝐴) |
| 3 | epelg 4345 | . . . 4 ⊢ (𝐴 ∈ 𝐴 → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
| 4 | 3 | adantl 277 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) |
| 5 | 2, 4 | mtbid 674 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) |
| 6 | 5 | pm2.01da 637 | 1 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 class class class wbr 4051 E cep 4342 Fr wfr 4383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-br 4052 df-opab 4114 df-eprel 4344 df-frfor 4386 df-frind 4387 |
| This theorem is referenced by: tz7.2 4409 |
| Copyright terms: Public domain | W3C validator |