ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efrirr GIF version

Theorem efrirr 4330
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr ( E Fr 𝐴 → ¬ 𝐴𝐴)

Proof of Theorem efrirr
StepHypRef Expression
1 frirrg 4327 . . . 4 (( E Fr 𝐴𝐴𝐴𝐴𝐴) → ¬ 𝐴 E 𝐴)
213anidm23 1287 . . 3 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴 E 𝐴)
3 epelg 4267 . . . 4 (𝐴𝐴 → (𝐴 E 𝐴𝐴𝐴))
43adantl 275 . . 3 (( E Fr 𝐴𝐴𝐴) → (𝐴 E 𝐴𝐴𝐴))
52, 4mtbid 662 . 2 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴𝐴)
65pm2.01da 626 1 ( E Fr 𝐴 → ¬ 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 2136   class class class wbr 3981   E cep 4264   Fr wfr 4305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-v 2727  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-br 3982  df-opab 4043  df-eprel 4266  df-frfor 4308  df-frind 4309
This theorem is referenced by:  tz7.2  4331
  Copyright terms: Public domain W3C validator