ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  efrirr GIF version

Theorem efrirr 4443
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.)
Assertion
Ref Expression
efrirr ( E Fr 𝐴 → ¬ 𝐴𝐴)

Proof of Theorem efrirr
StepHypRef Expression
1 frirrg 4440 . . . 4 (( E Fr 𝐴𝐴𝐴𝐴𝐴) → ¬ 𝐴 E 𝐴)
213anidm23 1331 . . 3 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴 E 𝐴)
3 epelg 4380 . . . 4 (𝐴𝐴 → (𝐴 E 𝐴𝐴𝐴))
43adantl 277 . . 3 (( E Fr 𝐴𝐴𝐴) → (𝐴 E 𝐴𝐴𝐴))
52, 4mtbid 676 . 2 (( E Fr 𝐴𝐴𝐴) → ¬ 𝐴𝐴)
65pm2.01da 639 1 ( E Fr 𝐴 → ¬ 𝐴𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wcel 2200   class class class wbr 4082   E cep 4377   Fr wfr 4418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-eprel 4379  df-frfor 4421  df-frind 4422
This theorem is referenced by:  tz7.2  4444
  Copyright terms: Public domain W3C validator