![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > efrirr | GIF version |
Description: Irreflexivity of the epsilon relation: a class founded by epsilon is not a member of itself. (Contributed by NM, 18-Apr-1994.) (Revised by Mario Carneiro, 22-Jun-2015.) |
Ref | Expression |
---|---|
efrirr | ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frirrg 4201 | . . . 4 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 E 𝐴) | |
2 | 1 | 3anidm23 1240 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 E 𝐴) |
3 | epelg 4141 | . . . 4 ⊢ (𝐴 ∈ 𝐴 → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
4 | 3 | adantl 272 | . . 3 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → (𝐴 E 𝐴 ↔ 𝐴 ∈ 𝐴)) |
5 | 2, 4 | mtbid 635 | . 2 ⊢ (( E Fr 𝐴 ∧ 𝐴 ∈ 𝐴) → ¬ 𝐴 ∈ 𝐴) |
6 | 5 | pm2.01da 603 | 1 ⊢ ( E Fr 𝐴 → ¬ 𝐴 ∈ 𝐴) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 1445 class class class wbr 3867 E cep 4138 Fr wfr 4179 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-14 1457 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 ax-sep 3978 ax-pow 4030 ax-pr 4060 |
This theorem depends on definitions: df-bi 116 df-3an 929 df-tru 1299 df-nf 1402 df-sb 1700 df-eu 1958 df-mo 1959 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-ne 2263 df-ral 2375 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 df-pw 3451 df-sn 3472 df-pr 3473 df-op 3475 df-br 3868 df-opab 3922 df-eprel 4140 df-frfor 4182 df-frind 4183 |
This theorem is referenced by: tz7.2 4205 |
Copyright terms: Public domain | W3C validator |