| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > efsub | GIF version | ||
| Description: Difference of exponents law for exponential function. (Contributed by Steve Rodriguez, 25-Nov-2007.) |
| Ref | Expression |
|---|---|
| efsub | ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | efcl 12090 | . . . . 5 ⊢ (𝐴 ∈ ℂ → (exp‘𝐴) ∈ ℂ) | |
| 2 | 1 | 3ad2ant1 1021 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘𝐴) ∈ ℂ) |
| 3 | efcl 12090 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) ∈ ℂ) | |
| 4 | 3 | 3ad2ant2 1022 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘𝐵) ∈ ℂ) |
| 5 | efap0 12103 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (exp‘𝐵) # 0) | |
| 6 | 5 | 3ad2ant2 1022 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘𝐵) # 0) |
| 7 | 2, 4, 6 | divrecapd 8901 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) |
| 8 | 7 | 3anidm23 1310 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) / (exp‘𝐵)) = ((exp‘𝐴) · (1 / (exp‘𝐵)))) |
| 9 | efcan 12102 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → ((exp‘𝐵) · (exp‘-𝐵)) = 1) | |
| 10 | 9 | eqcomd 2213 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → 1 = ((exp‘𝐵) · (exp‘-𝐵))) |
| 11 | 1cnd 8123 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → 1 ∈ ℂ) | |
| 12 | negcl 8307 | . . . . . . . 8 ⊢ (𝐵 ∈ ℂ → -𝐵 ∈ ℂ) | |
| 13 | efcl 12090 | . . . . . . . 8 ⊢ (-𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ) | |
| 14 | 12, 13 | syl 14 | . . . . . . 7 ⊢ (𝐵 ∈ ℂ → (exp‘-𝐵) ∈ ℂ) |
| 15 | 11, 14, 3, 5 | divmulap2d 8932 | . . . . . 6 ⊢ (𝐵 ∈ ℂ → ((1 / (exp‘𝐵)) = (exp‘-𝐵) ↔ 1 = ((exp‘𝐵) · (exp‘-𝐵)))) |
| 16 | 10, 15 | mpbird 167 | . . . . 5 ⊢ (𝐵 ∈ ℂ → (1 / (exp‘𝐵)) = (exp‘-𝐵)) |
| 17 | 16 | oveq2d 5983 | . . . 4 ⊢ (𝐵 ∈ ℂ → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵))) |
| 18 | 17 | adantl 277 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = ((exp‘𝐴) · (exp‘-𝐵))) |
| 19 | efadd 12101 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ -𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵))) | |
| 20 | 12, 19 | sylan2 286 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = ((exp‘𝐴) · (exp‘-𝐵))) |
| 21 | 18, 20 | eqtr4d 2243 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((exp‘𝐴) · (1 / (exp‘𝐵))) = (exp‘(𝐴 + -𝐵))) |
| 22 | negsub 8355 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + -𝐵) = (𝐴 − 𝐵)) | |
| 23 | 22 | fveq2d 5603 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 + -𝐵)) = (exp‘(𝐴 − 𝐵))) |
| 24 | 8, 21, 23 | 3eqtrrd 2245 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (exp‘(𝐴 − 𝐵)) = ((exp‘𝐴) / (exp‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 981 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 ℂcc 7958 0cc0 7960 1c1 7961 + caddc 7963 · cmul 7965 − cmin 8278 -cneg 8279 # cap 8689 / cdiv 8780 expce 12068 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 ax-caucvg 8080 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-disj 4036 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-po 4361 df-iso 4362 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-isom 5299 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-sup 7112 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-4 9132 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-ico 10051 df-fz 10166 df-fzo 10300 df-seqfrec 10630 df-exp 10721 df-fac 10908 df-bc 10930 df-ihash 10958 df-cj 11268 df-re 11269 df-im 11270 df-rsqrt 11424 df-abs 11425 df-clim 11705 df-sumdc 11780 df-ef 12074 |
| This theorem is referenced by: reeff1oleme 15359 relogdiv 15457 |
| Copyright terms: Public domain | W3C validator |