![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > idssen | GIF version |
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.) |
Ref | Expression |
---|---|
idssen | ⊢ I ⊆ ≈ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reli 4792 | . 2 ⊢ Rel I | |
2 | vex 2763 | . . . . 5 ⊢ 𝑦 ∈ V | |
3 | 2 | ideq 4815 | . . . 4 ⊢ (𝑥 I 𝑦 ↔ 𝑥 = 𝑦) |
4 | vex 2763 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | eqeng 6822 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥 = 𝑦 → 𝑥 ≈ 𝑦)) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝑥 ≈ 𝑦) |
7 | 3, 6 | sylbi 121 | . . 3 ⊢ (𝑥 I 𝑦 → 𝑥 ≈ 𝑦) |
8 | df-br 4031 | . . 3 ⊢ (𝑥 I 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ I ) | |
9 | df-br 4031 | . . 3 ⊢ (𝑥 ≈ 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ ≈ ) | |
10 | 7, 8, 9 | 3imtr3i 200 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ I → 〈𝑥, 𝑦〉 ∈ ≈ ) |
11 | 1, 10 | relssi 4751 | 1 ⊢ I ⊆ ≈ |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2164 Vcvv 2760 ⊆ wss 3154 〈cop 3622 class class class wbr 4030 I cid 4320 ≈ cen 6794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-fun 5257 df-fn 5258 df-f 5259 df-f1 5260 df-fo 5261 df-f1o 5262 df-en 6797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |