ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idssen GIF version

Theorem idssen 6926
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen I ⊆ ≈

Proof of Theorem idssen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4850 . 2 Rel I
2 vex 2802 . . . . 5 𝑦 ∈ V
32ideq 4873 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
4 vex 2802 . . . . 5 𝑥 ∈ V
5 eqeng 6915 . . . . 5 (𝑥 ∈ V → (𝑥 = 𝑦𝑥𝑦))
64, 5ax-mp 5 . . . 4 (𝑥 = 𝑦𝑥𝑦)
73, 6sylbi 121 . . 3 (𝑥 I 𝑦𝑥𝑦)
8 df-br 4083 . . 3 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
9 df-br 4083 . . 3 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ≈ )
107, 8, 93imtr3i 200 . 2 (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ ≈ )
111, 10relssi 4809 1 I ⊆ ≈
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  Vcvv 2799  wss 3197  cop 3669   class class class wbr 4082   I cid 4378  cen 6883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-en 6886
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator