ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  idssen GIF version

Theorem idssen 6755
Description: Equality implies equinumerosity. (Contributed by NM, 30-Apr-1998.) (Revised by Mario Carneiro, 15-Nov-2014.)
Assertion
Ref Expression
idssen I ⊆ ≈

Proof of Theorem idssen
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reli 4740 . 2 Rel I
2 vex 2733 . . . . 5 𝑦 ∈ V
32ideq 4763 . . . 4 (𝑥 I 𝑦𝑥 = 𝑦)
4 vex 2733 . . . . 5 𝑥 ∈ V
5 eqeng 6744 . . . . 5 (𝑥 ∈ V → (𝑥 = 𝑦𝑥𝑦))
64, 5ax-mp 5 . . . 4 (𝑥 = 𝑦𝑥𝑦)
73, 6sylbi 120 . . 3 (𝑥 I 𝑦𝑥𝑦)
8 df-br 3990 . . 3 (𝑥 I 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ I )
9 df-br 3990 . . 3 (𝑥𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ ≈ )
107, 8, 93imtr3i 199 . 2 (⟨𝑥, 𝑦⟩ ∈ I → ⟨𝑥, 𝑦⟩ ∈ ≈ )
111, 10relssi 4702 1 I ⊆ ≈
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2141  Vcvv 2730  wss 3121  cop 3586   class class class wbr 3989   I cid 4273  cen 6716
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-en 6719
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator