![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > dcapnconstALT | GIF version |
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 14971 by means of dceqnconst 14970. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
dcapnconstALT | β’ (βπ₯ β β DECID π₯ # 0 β βπ(π:ββΆβ€ β§ (πβ0) = 0 β§ βπ₯ β β+ (πβπ₯) β 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tridceq 14966 | . . 3 β’ (βπ¦ β β βπ§ β β (π¦ < π§ β¨ π¦ = π§ β¨ π§ < π¦) β βπ¦ β β βπ§ β β DECID π¦ = π§) | |
2 | reap0 14968 | . . 3 β’ (βπ¦ β β βπ§ β β (π¦ < π§ β¨ π¦ = π§ β¨ π§ < π¦) β βπ₯ β β DECID π₯ # 0) | |
3 | redc0 14967 | . . 3 β’ (βπ¦ β β βπ§ β β DECID π¦ = π§ β βπ₯ β β DECID π₯ = 0) | |
4 | 1, 2, 3 | 3imtr3i 200 | . 2 β’ (βπ₯ β β DECID π₯ # 0 β βπ₯ β β DECID π₯ = 0) |
5 | dceqnconst 14970 | . 2 β’ (βπ₯ β β DECID π₯ = 0 β βπ(π:ββΆβ€ β§ (πβ0) = 0 β§ βπ₯ β β+ (πβπ₯) β 0)) | |
6 | 4, 5 | syl 14 | 1 β’ (βπ₯ β β DECID π₯ # 0 β βπ(π:ββΆβ€ β§ (πβ0) = 0 β§ βπ₯ β β+ (πβπ₯) β 0)) |
Colors of variables: wff set class |
Syntax hints: β wi 4 DECID wdc 834 β¨ w3o 977 β§ w3a 978 = wceq 1353 βwex 1492 β wne 2347 βwral 2455 class class class wbr 4005 βΆwf 5214 βcfv 5218 βcr 7813 0cc0 7814 < clt 7995 # cap 8541 β€cz 9256 β+crp 9656 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7905 ax-resscn 7906 ax-1cn 7907 ax-1re 7908 ax-icn 7909 ax-addcl 7910 ax-addrcl 7911 ax-mulcl 7912 ax-mulrcl 7913 ax-addcom 7914 ax-mulcom 7915 ax-addass 7916 ax-mulass 7917 ax-distr 7918 ax-i2m1 7919 ax-0lt1 7920 ax-1rid 7921 ax-0id 7922 ax-rnegex 7923 ax-precex 7924 ax-cnre 7925 ax-pre-ltirr 7926 ax-pre-ltwlin 7927 ax-pre-lttrn 7928 ax-pre-apti 7929 ax-pre-ltadd 7930 ax-pre-mulgt0 7931 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5834 df-ov 5881 df-oprab 5882 df-mpo 5883 df-pnf 7997 df-mnf 7998 df-xr 7999 df-ltxr 8000 df-le 8001 df-sub 8133 df-neg 8134 df-reap 8535 df-ap 8542 df-inn 8923 df-z 9257 df-rp 9657 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |