| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dcapnconstALT | GIF version | ||
| Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 16340 by means of dceqnconst 16339. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| dcapnconstALT | ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tridceq 16335 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦 < 𝑧 ∨ 𝑦 = 𝑧 ∨ 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ DECID 𝑦 = 𝑧) | |
| 2 | reap0 16337 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦 < 𝑧 ∨ 𝑦 = 𝑧 ∨ 𝑧 < 𝑦) ↔ ∀𝑥 ∈ ℝ DECID 𝑥 # 0) | |
| 3 | redc0 16336 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ DECID 𝑦 = 𝑧 ↔ ∀𝑥 ∈ ℝ DECID 𝑥 = 0) | |
| 4 | 1, 2, 3 | 3imtr3i 200 | . 2 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑥 ∈ ℝ DECID 𝑥 = 0) |
| 5 | dceqnconst 16339 | . 2 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 838 ∨ w3o 982 ∧ w3a 983 = wceq 1375 ∃wex 1518 ≠ wne 2380 ∀wral 2488 class class class wbr 4062 ⟶wf 5290 ‘cfv 5294 ℝcr 7966 0cc0 7967 < clt 8149 # cap 8696 ℤcz 9414 ℝ+crp 9817 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-coll 4178 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 |
| This theorem depends on definitions: df-bi 117 df-dc 839 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-if 3583 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-inn 9079 df-z 9415 df-rp 9818 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |