![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > dcapnconstALT | GIF version |
Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 15193 by means of dceqnconst 15192. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
dcapnconstALT | ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tridceq 15188 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦 < 𝑧 ∨ 𝑦 = 𝑧 ∨ 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ DECID 𝑦 = 𝑧) | |
2 | reap0 15190 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦 < 𝑧 ∨ 𝑦 = 𝑧 ∨ 𝑧 < 𝑦) ↔ ∀𝑥 ∈ ℝ DECID 𝑥 # 0) | |
3 | redc0 15189 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ DECID 𝑦 = 𝑧 ↔ ∀𝑥 ∈ ℝ DECID 𝑥 = 0) | |
4 | 1, 2, 3 | 3imtr3i 200 | . 2 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑥 ∈ ℝ DECID 𝑥 = 0) |
5 | dceqnconst 15192 | . 2 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | |
6 | 4, 5 | syl 14 | 1 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 DECID wdc 835 ∨ w3o 978 ∧ w3a 979 = wceq 1363 ∃wex 1502 ≠ wne 2359 ∀wral 2467 class class class wbr 4017 ⟶wf 5226 ‘cfv 5230 ℝcr 7827 0cc0 7828 < clt 8009 # cap 8555 ℤcz 9270 ℝ+crp 9670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2161 ax-14 2162 ax-ext 2170 ax-coll 4132 ax-sep 4135 ax-pow 4188 ax-pr 4223 ax-un 4447 ax-setind 4550 ax-cnex 7919 ax-resscn 7920 ax-1cn 7921 ax-1re 7922 ax-icn 7923 ax-addcl 7924 ax-addrcl 7925 ax-mulcl 7926 ax-mulrcl 7927 ax-addcom 7928 ax-mulcom 7929 ax-addass 7930 ax-mulass 7931 ax-distr 7932 ax-i2m1 7933 ax-0lt1 7934 ax-1rid 7935 ax-0id 7936 ax-rnegex 7937 ax-precex 7938 ax-cnre 7939 ax-pre-ltirr 7940 ax-pre-ltwlin 7941 ax-pre-lttrn 7942 ax-pre-apti 7943 ax-pre-ltadd 7944 ax-pre-mulgt0 7945 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2040 df-mo 2041 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-ne 2360 df-nel 2455 df-ral 2472 df-rex 2473 df-reu 2474 df-rab 2476 df-v 2753 df-sbc 2977 df-csb 3072 df-dif 3145 df-un 3147 df-in 3149 df-ss 3156 df-if 3549 df-pw 3591 df-sn 3612 df-pr 3613 df-op 3615 df-uni 3824 df-int 3859 df-iun 3902 df-br 4018 df-opab 4079 df-mpt 4080 df-id 4307 df-xp 4646 df-rel 4647 df-cnv 4648 df-co 4649 df-dm 4650 df-rn 4651 df-res 4652 df-ima 4653 df-iota 5192 df-fun 5232 df-fn 5233 df-f 5234 df-f1 5235 df-fo 5236 df-f1o 5237 df-fv 5238 df-riota 5846 df-ov 5893 df-oprab 5894 df-mpo 5895 df-pnf 8011 df-mnf 8012 df-xr 8013 df-ltxr 8014 df-le 8015 df-sub 8147 df-neg 8148 df-reap 8549 df-ap 8556 df-inn 8937 df-z 9271 df-rp 9671 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |