| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > dcapnconstALT | GIF version | ||
| Description: Decidability of real number apartness implies the existence of a certain non-constant function from real numbers to integers. A proof of dcapnconst 16459 by means of dceqnconst 16458. (Contributed by Jim Kingdon, 27-Jul-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| dcapnconstALT | ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tridceq 16454 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦 < 𝑧 ∨ 𝑦 = 𝑧 ∨ 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ DECID 𝑦 = 𝑧) | |
| 2 | reap0 16456 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ (𝑦 < 𝑧 ∨ 𝑦 = 𝑧 ∨ 𝑧 < 𝑦) ↔ ∀𝑥 ∈ ℝ DECID 𝑥 # 0) | |
| 3 | redc0 16455 | . . 3 ⊢ (∀𝑦 ∈ ℝ ∀𝑧 ∈ ℝ DECID 𝑦 = 𝑧 ↔ ∀𝑥 ∈ ℝ DECID 𝑥 = 0) | |
| 4 | 1, 2, 3 | 3imtr3i 200 | . 2 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∀𝑥 ∈ ℝ DECID 𝑥 = 0) |
| 5 | dceqnconst 16458 | . 2 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 = 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) | |
| 6 | 4, 5 | syl 14 | 1 ⊢ (∀𝑥 ∈ ℝ DECID 𝑥 # 0 → ∃𝑓(𝑓:ℝ⟶ℤ ∧ (𝑓‘0) = 0 ∧ ∀𝑥 ∈ ℝ+ (𝑓‘𝑥) ≠ 0)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 DECID wdc 839 ∨ w3o 1001 ∧ w3a 1002 = wceq 1395 ∃wex 1538 ≠ wne 2400 ∀wral 2508 class class class wbr 4083 ⟶wf 5314 ‘cfv 5318 ℝcr 8006 0cc0 8007 < clt 8189 # cap 8736 ℤcz 9454 ℝ+crp 9857 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-inn 9119 df-z 9455 df-rp 9858 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |