| Step | Hyp | Ref
| Expression |
| 1 | | suplocsrlem.b |
. . 3
⊢ 𝐵 = {𝑤 ∈ P ∣ (𝐶 +R
[〈𝑤,
1P〉] ~R ) ∈ 𝐴} |
| 2 | | suplocsrlem.ss |
. . 3
⊢ (𝜑 → 𝐴 ⊆ R) |
| 3 | | suplocsrlem.c |
. . 3
⊢ (𝜑 → 𝐶 ∈ 𝐴) |
| 4 | | suplocsrlem.ub |
. . 3
⊢ (𝜑 → ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) |
| 5 | | suplocsrlem.loc |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ R ∀𝑦 ∈ R (𝑥 <R
𝑦 → (∃𝑧 ∈ 𝐴 𝑥 <R 𝑧 ∨ ∀𝑧 ∈ 𝐴 𝑧 <R 𝑦))) |
| 6 | 1, 2, 3, 4, 5 | suplocsrlempr 7891 |
. 2
⊢ (𝜑 → ∃𝑣 ∈ P (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) |
| 7 | | simpr 110 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ P) → 𝑣 ∈
P) |
| 8 | 2, 3 | sseldd 3185 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ R) |
| 9 | 8 | adantr 276 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑣 ∈ P) → 𝐶 ∈
R) |
| 10 | | mappsrprg 7888 |
. . . . . . 7
⊢ ((𝑣 ∈ P ∧
𝐶 ∈ R)
→ (𝐶
+R -1R)
<R (𝐶 +R [〈𝑣,
1P〉] ~R
)) |
| 11 | 7, 9, 10 | syl2anc 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ P) → (𝐶 +R
-1R) <R (𝐶 +R [〈𝑣,
1P〉] ~R
)) |
| 12 | | ltrelsr 7822 |
. . . . . . 7
⊢
<R ⊆ (R ×
R) |
| 13 | 12 | brel 4716 |
. . . . . 6
⊢ ((𝐶 +R
-1R) <R (𝐶 +R [〈𝑣,
1P〉] ~R ) → ((𝐶 +R
-1R) ∈ R ∧ (𝐶 +R [〈𝑣,
1P〉] ~R ) ∈
R)) |
| 14 | 11, 13 | syl 14 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ P) → ((𝐶 +R
-1R) ∈ R ∧ (𝐶 +R [〈𝑣,
1P〉] ~R ) ∈
R)) |
| 15 | 14 | simprd 114 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ P) → (𝐶 +R
[〈𝑣,
1P〉] ~R ) ∈
R) |
| 16 | | breq2 4038 |
. . . . . . . 8
⊢ (𝑤 = 𝑎 → (𝑣<P 𝑤 ↔ 𝑣<P 𝑎)) |
| 17 | 16 | notbid 668 |
. . . . . . 7
⊢ (𝑤 = 𝑎 → (¬ 𝑣<P 𝑤 ↔ ¬ 𝑣<P 𝑎)) |
| 18 | 17 | cbvralv 2729 |
. . . . . 6
⊢
(∀𝑤 ∈
𝐵 ¬ 𝑣<P 𝑤 ↔ ∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) |
| 19 | | ltsosr 7848 |
. . . . . . . . . . . . . . 15
⊢
<R Or R |
| 20 | 19, 12 | sotri 5066 |
. . . . . . . . . . . . . 14
⊢ (((𝐶 +R
-1R) <R (𝐶 +R [〈𝑣,
1P〉] ~R ) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R )
<R 𝑦) → (𝐶 +R
-1R) <R 𝑦) |
| 21 | 11, 20 | sylan 283 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R )
<R 𝑦) → (𝐶 +R
-1R) <R 𝑦) |
| 22 | 9 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R )
<R 𝑦) → 𝐶 ∈ R) |
| 23 | | map2psrprg 7889 |
. . . . . . . . . . . . . 14
⊢ (𝐶 ∈ R →
((𝐶
+R -1R)
<R 𝑦 ↔ ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦)) |
| 24 | 22, 23 | syl 14 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R )
<R 𝑦) → ((𝐶 +R
-1R) <R 𝑦 ↔ ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦)) |
| 25 | 21, 24 | mpbid 147 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ (𝐶 +R
[〈𝑣,
1P〉] ~R )
<R 𝑦) → ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) |
| 26 | 25 | adantlr 477 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) → ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) |
| 27 | 26 | adantlr 477 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) → ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) |
| 28 | | simplr 528 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) |
| 29 | | simprr 531 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) |
| 30 | 28, 29 | breqtrrd 4062 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → (𝐶 +R [〈𝑣,
1P〉] ~R )
<R (𝐶 +R [〈𝑤,
1P〉] ~R
)) |
| 31 | 7 | ad4antr 494 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → 𝑣 ∈ P) |
| 32 | | simprl 529 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → 𝑤 ∈ P) |
| 33 | 9 | ad4antr 494 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → 𝐶 ∈ R) |
| 34 | | ltpsrprg 7887 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ P ∧
𝑤 ∈ P
∧ 𝐶 ∈
R) → ((𝐶
+R [〈𝑣, 1P〉]
~R ) <R (𝐶 +R [〈𝑤,
1P〉] ~R ) ↔ 𝑣<P
𝑤)) |
| 35 | 31, 32, 33, 34 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → ((𝐶 +R [〈𝑣,
1P〉] ~R )
<R (𝐶 +R [〈𝑤,
1P〉] ~R ) ↔ 𝑣<P
𝑤)) |
| 36 | 30, 35 | mpbid 147 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → 𝑣<P 𝑤) |
| 37 | | equcom 1720 |
. . . . . . . . . . . . 13
⊢ (𝑤 = 𝑎 ↔ 𝑎 = 𝑤) |
| 38 | | bicom 140 |
. . . . . . . . . . . . 13
⊢ ((¬
𝑣<P 𝑤 ↔ ¬ 𝑣<P 𝑎) ↔ (¬ 𝑣<P
𝑎 ↔ ¬ 𝑣<P
𝑤)) |
| 39 | 17, 37, 38 | 3imtr3i 200 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝑤 → (¬ 𝑣<P 𝑎 ↔ ¬ 𝑣<P 𝑤)) |
| 40 | | simp-4r 542 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → ∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) |
| 41 | | simpllr 534 |
. . . . . . . . . . . . . 14
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → 𝑦 ∈ 𝐴) |
| 42 | 29, 41 | eqeltrd 2273 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → (𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴) |
| 43 | 1 | rabeq2i 2760 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ 𝐵 ↔ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) ∈ 𝐴)) |
| 44 | 32, 42, 43 | sylanbrc 417 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → 𝑤 ∈ 𝐵) |
| 45 | 39, 40, 44 | rspcdva 2873 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) → ¬ 𝑣<P
𝑤) |
| 46 | 36, 45 | pm2.21fal 1384 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) ∧ (𝑤 ∈ P ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦)) →
⊥) |
| 47 | 27, 46 | rexlimddv 2619 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) ∧ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) → ⊥) |
| 48 | 47 | inegd 1383 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) ∧ 𝑦 ∈ 𝐴) → ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) |
| 49 | 48 | ralrimiva 2570 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎) → ∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦) |
| 50 | 49 | ex 115 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑣 ∈ P) →
(∀𝑎 ∈ 𝐵 ¬ 𝑣<P 𝑎 → ∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) |
| 51 | 18, 50 | biimtrid 152 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ P) →
(∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 → ∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) |
| 52 | | nfv 1542 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤(𝜑 ∧ 𝑣 ∈ P) |
| 53 | | nfra1 2528 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑤∀𝑤 ∈ P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) |
| 54 | 52, 53 | nfan 1579 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) |
| 55 | | nfv 1542 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑤 𝑦 ∈
R |
| 56 | 54, 55 | nfan 1579 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑤(((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) |
| 57 | | nfv 1542 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑤 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) |
| 58 | 56, 57 | nfan 1579 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤((((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) |
| 59 | | nfv 1542 |
. . . . . . . . . . 11
⊢
Ⅎ𝑤(𝐶 +R
-1R) <R 𝑦 |
| 60 | 58, 59 | nfan 1579 |
. . . . . . . . . 10
⊢
Ⅎ𝑤(((((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) |
| 61 | | simp-6r 546 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) |
| 62 | | simplr 528 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → 𝑤 ∈ P) |
| 63 | | simpr 110 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) |
| 64 | | simp-4r 542 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R
)) |
| 65 | 63, 64 | eqbrtrd 4056 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R
)) |
| 66 | | simp-7r 548 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → 𝑣 ∈ P) |
| 67 | 9 | ad4antr 494 |
. . . . . . . . . . . . . . . 16
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) → 𝐶 ∈ R) |
| 68 | 67 | ad2antrr 488 |
. . . . . . . . . . . . . . 15
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → 𝐶 ∈ R) |
| 69 | | ltpsrprg 7887 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ P ∧
𝑣 ∈ P
∧ 𝐶 ∈
R) → ((𝐶
+R [〈𝑤, 1P〉]
~R ) <R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔ 𝑤<P
𝑣)) |
| 70 | 62, 66, 68, 69 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → ((𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑣,
1P〉] ~R ) ↔ 𝑤<P
𝑣)) |
| 71 | 65, 70 | mpbid 147 |
. . . . . . . . . . . . 13
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → 𝑤<P 𝑣) |
| 72 | | rsp 2544 |
. . . . . . . . . . . . 13
⊢
(∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) → (𝑤 ∈ P → (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢))) |
| 73 | 61, 62, 71, 72 | syl3c 63 |
. . . . . . . . . . . 12
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) |
| 74 | | breq2 4038 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑏 → (𝑤<P 𝑢 ↔ 𝑤<P 𝑏)) |
| 75 | 74 | cbvrexv 2730 |
. . . . . . . . . . . 12
⊢
(∃𝑢 ∈
𝐵 𝑤<P 𝑢 ↔ ∃𝑏 ∈ 𝐵 𝑤<P 𝑏) |
| 76 | 73, 75 | sylib 122 |
. . . . . . . . . . 11
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → ∃𝑏 ∈ 𝐵 𝑤<P 𝑏) |
| 77 | | simprl 529 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → 𝑏 ∈ 𝐵) |
| 78 | | opeq1 3809 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 = 𝑏 → 〈𝑤, 1P〉 =
〈𝑏,
1P〉) |
| 79 | 78 | eceq1d 6637 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 = 𝑏 → [〈𝑤, 1P〉]
~R = [〈𝑏, 1P〉]
~R ) |
| 80 | 79 | oveq2d 5941 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = 𝑏 → (𝐶 +R [〈𝑤,
1P〉] ~R ) = (𝐶 +R
[〈𝑏,
1P〉] ~R
)) |
| 81 | 80 | eleq1d 2265 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = 𝑏 → ((𝐶 +R [〈𝑤,
1P〉] ~R ) ∈ 𝐴 ↔ (𝐶 +R [〈𝑏,
1P〉] ~R ) ∈ 𝐴)) |
| 82 | 81, 1 | elrab2 2923 |
. . . . . . . . . . . . . 14
⊢ (𝑏 ∈ 𝐵 ↔ (𝑏 ∈ P ∧ (𝐶 +R
[〈𝑏,
1P〉] ~R ) ∈ 𝐴)) |
| 83 | 77, 82 | sylib 122 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → (𝑏 ∈ P ∧ (𝐶 +R
[〈𝑏,
1P〉] ~R ) ∈ 𝐴)) |
| 84 | 83 | simprd 114 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → (𝐶 +R [〈𝑏,
1P〉] ~R ) ∈ 𝐴) |
| 85 | | simplr 528 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) |
| 86 | | simprr 531 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → 𝑤<P 𝑏) |
| 87 | | simpllr 534 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → 𝑤 ∈ P) |
| 88 | 83 | simpld 112 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → 𝑏 ∈ P) |
| 89 | 67 | ad3antrrr 492 |
. . . . . . . . . . . . . . 15
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → 𝐶 ∈ R) |
| 90 | | ltpsrprg 7887 |
. . . . . . . . . . . . . . 15
⊢ ((𝑤 ∈ P ∧
𝑏 ∈ P
∧ 𝐶 ∈
R) → ((𝐶
+R [〈𝑤, 1P〉]
~R ) <R (𝐶 +R [〈𝑏,
1P〉] ~R ) ↔ 𝑤<P
𝑏)) |
| 91 | 87, 88, 89, 90 | syl3anc 1249 |
. . . . . . . . . . . . . 14
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → ((𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑏,
1P〉] ~R ) ↔ 𝑤<P
𝑏)) |
| 92 | 86, 91 | mpbird 167 |
. . . . . . . . . . . . 13
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → (𝐶 +R [〈𝑤,
1P〉] ~R )
<R (𝐶 +R [〈𝑏,
1P〉] ~R
)) |
| 93 | 85, 92 | eqbrtrrd 4058 |
. . . . . . . . . . . 12
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → 𝑦 <R (𝐶 +R
[〈𝑏,
1P〉] ~R
)) |
| 94 | | breq2 4038 |
. . . . . . . . . . . . 13
⊢ (𝑧 = (𝐶 +R [〈𝑏,
1P〉] ~R ) → (𝑦 <R
𝑧 ↔ 𝑦 <R (𝐶 +R
[〈𝑏,
1P〉] ~R
))) |
| 95 | 94 | rspcev 2868 |
. . . . . . . . . . . 12
⊢ (((𝐶 +R
[〈𝑏,
1P〉] ~R ) ∈ 𝐴 ∧ 𝑦 <R (𝐶 +R
[〈𝑏,
1P〉] ~R )) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) |
| 96 | 84, 93, 95 | syl2anc 411 |
. . . . . . . . . . 11
⊢
(((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) ∧ (𝑏 ∈ 𝐵 ∧ 𝑤<P 𝑏)) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) |
| 97 | 76, 96 | rexlimddv 2619 |
. . . . . . . . . 10
⊢
((((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) ∧ 𝑤 ∈ P) ∧ (𝐶 +R
[〈𝑤,
1P〉] ~R ) = 𝑦) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) |
| 98 | | simpr 110 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) → (𝐶 +R
-1R) <R 𝑦) |
| 99 | 67, 23 | syl 14 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) → ((𝐶 +R
-1R) <R 𝑦 ↔ ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦)) |
| 100 | 98, 99 | mpbid 147 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) → ∃𝑤 ∈ P (𝐶 +R [〈𝑤,
1P〉] ~R ) = 𝑦) |
| 101 | 60, 97, 100 | r19.29af 2638 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ (𝐶 +R
-1R) <R 𝑦) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) |
| 102 | 3 | ad5antr 496 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ 𝑦 <R 𝐶) → 𝐶 ∈ 𝐴) |
| 103 | | breq2 4038 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝐶 → (𝑦 <R 𝑧 ↔ 𝑦 <R 𝐶)) |
| 104 | 103 | rspcev 2868 |
. . . . . . . . . 10
⊢ ((𝐶 ∈ 𝐴 ∧ 𝑦 <R 𝐶) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) |
| 105 | 102, 104 | sylancom 420 |
. . . . . . . . 9
⊢
((((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) ∧ 𝑦 <R 𝐶) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) |
| 106 | | ltm1sr 7861 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ R →
(𝐶
+R -1R)
<R 𝐶) |
| 107 | 8, 106 | syl 14 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶 +R
-1R) <R 𝐶) |
| 108 | 107 | ad4antr 494 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) → (𝐶 +R
-1R) <R 𝐶) |
| 109 | 9 | ad3antrrr 492 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) → 𝐶 ∈ R) |
| 110 | | m1r 7836 |
. . . . . . . . . . . 12
⊢
-1R ∈ R |
| 111 | | addclsr 7837 |
. . . . . . . . . . . 12
⊢ ((𝐶 ∈ R ∧
-1R ∈ R) → (𝐶 +R
-1R) ∈ R) |
| 112 | 109, 110,
111 | sylancl 413 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) → (𝐶 +R
-1R) ∈ R) |
| 113 | | simplr 528 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) → 𝑦 ∈ R) |
| 114 | | sowlin 4356 |
. . . . . . . . . . . 12
⊢ ((
<R Or R ∧ ((𝐶 +R
-1R) ∈ R ∧ 𝐶 ∈ R ∧ 𝑦 ∈ R)) →
((𝐶
+R -1R)
<R 𝐶 → ((𝐶 +R
-1R) <R 𝑦 ∨ 𝑦 <R 𝐶))) |
| 115 | 19, 114 | mpan 424 |
. . . . . . . . . . 11
⊢ (((𝐶 +R
-1R) ∈ R ∧ 𝐶 ∈ R ∧ 𝑦 ∈ R) →
((𝐶
+R -1R)
<R 𝐶 → ((𝐶 +R
-1R) <R 𝑦 ∨ 𝑦 <R 𝐶))) |
| 116 | 112, 109,
113, 115 | syl3anc 1249 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) → ((𝐶 +R
-1R) <R 𝐶 → ((𝐶 +R
-1R) <R 𝑦 ∨ 𝑦 <R 𝐶))) |
| 117 | 108, 116 | mpd 13 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) → ((𝐶 +R
-1R) <R 𝑦 ∨ 𝑦 <R 𝐶)) |
| 118 | 101, 105,
117 | mpjaodan 799 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑣 ∈ P) ∧
∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) ∧ 𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R )) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) |
| 119 | 118 | ex 115 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) ∧ 𝑦 ∈ R) → (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) |
| 120 | 119 | ralrimiva 2570 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑣 ∈ P) ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → ∀𝑦 ∈ R (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) |
| 121 | 120 | ex 115 |
. . . . 5
⊢ ((𝜑 ∧ 𝑣 ∈ P) →
(∀𝑤 ∈
P (𝑤<P 𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢) → ∀𝑦 ∈ R (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| 122 | 51, 121 | anim12d 335 |
. . . 4
⊢ ((𝜑 ∧ 𝑣 ∈ P) →
((∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → (∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
| 123 | | breq1 4037 |
. . . . . . . 8
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) → (𝑥 <R
𝑦 ↔ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) |
| 124 | 123 | notbid 668 |
. . . . . . 7
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) → (¬
𝑥
<R 𝑦 ↔ ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) |
| 125 | 124 | ralbidv 2497 |
. . . . . 6
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) →
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ↔ ∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦)) |
| 126 | | breq2 4038 |
. . . . . . . 8
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) → (𝑦 <R
𝑥 ↔ 𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R
))) |
| 127 | 126 | imbi1d 231 |
. . . . . . 7
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) → ((𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) ↔ (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| 128 | 127 | ralbidv 2497 |
. . . . . 6
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) →
(∀𝑦 ∈
R (𝑦
<R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧) ↔ ∀𝑦 ∈ R (𝑦 <R
(𝐶
+R [〈𝑣, 1P〉]
~R ) → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| 129 | 125, 128 | anbi12d 473 |
. . . . 5
⊢ (𝑥 = (𝐶 +R [〈𝑣,
1P〉] ~R ) →
((∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)) ↔ (∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
| 130 | 129 | rspcev 2868 |
. . . 4
⊢ (((𝐶 +R
[〈𝑣,
1P〉] ~R ) ∈
R ∧ (∀𝑦 ∈ 𝐴 ¬ (𝐶 +R [〈𝑣,
1P〉] ~R )
<R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R (𝐶 +R
[〈𝑣,
1P〉] ~R ) →
∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |
| 131 | 15, 122, 130 | syl6an 1445 |
. . 3
⊢ ((𝜑 ∧ 𝑣 ∈ P) →
((∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
| 132 | 131 | rexlimdva 2614 |
. 2
⊢ (𝜑 → (∃𝑣 ∈ P (∀𝑤 ∈ 𝐵 ¬ 𝑣<P 𝑤 ∧ ∀𝑤 ∈ P (𝑤<P
𝑣 → ∃𝑢 ∈ 𝐵 𝑤<P 𝑢)) → ∃𝑥 ∈ R
(∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧)))) |
| 133 | 6, 132 | mpd 13 |
1
⊢ (𝜑 → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R
𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) |