ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcmpted GIF version

Theorem limcmpted 12840
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
Hypotheses
Ref Expression
limcmpted.a (𝜑𝐴 ⊆ ℂ)
limcmpted.b (𝜑𝐵 ∈ ℂ)
limcmpted.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
limcmpted (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐷(𝑧)

Proof of Theorem limcmpted
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2282 . . . . . 6 𝑤𝐷
2 nfcsb1v 3040 . . . . . 6 𝑧𝑤 / 𝑧𝐷
3 csbeq1a 3016 . . . . . 6 (𝑧 = 𝑤𝐷 = 𝑤 / 𝑧𝐷)
41, 2, 3cbvmpt 4031 . . . . 5 (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
54a1i 9 . . . 4 (𝜑 → (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷))
65oveq1d 5797 . . 3 (𝜑 → ((𝑧𝐴𝐷) lim 𝐵) = ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵))
76eleq2d 2210 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ 𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵)))
8 limcmpted.f . . . . 5 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
98fmpttd 5583 . . . 4 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
104feq1i 5273 . . . 4 ((𝑧𝐴𝐷):𝐴⟶ℂ ↔ (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
119, 10sylib 121 . . 3 (𝜑 → (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
12 limcmpted.a . . 3 (𝜑𝐴 ⊆ ℂ)
13 limcmpted.b . . 3 (𝜑𝐵 ∈ ℂ)
14 nfcv 2282 . . . 4 𝑧𝐴
1514, 2nfmpt 4028 . . 3 𝑧(𝑤𝐴𝑤 / 𝑧𝐷)
1611, 12, 13, 15ellimc3apf 12837 . 2 (𝜑 → (𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥))))
17 eqid 2140 . . . . . . . . . 10 (𝑤𝐴𝑤 / 𝑧𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
18 eqcom 2142 . . . . . . . . . . 11 (𝑧 = 𝑤𝑤 = 𝑧)
19 eqcom 2142 . . . . . . . . . . 11 (𝐷 = 𝑤 / 𝑧𝐷𝑤 / 𝑧𝐷 = 𝐷)
203, 18, 193imtr3i 199 . . . . . . . . . 10 (𝑤 = 𝑧𝑤 / 𝑧𝐷 = 𝐷)
21 simpr 109 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧𝐴)
2217, 20, 21, 8fvmptd3 5522 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) = 𝐷)
2322fvoveq1d 5804 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) = (abs‘(𝐷𝐶)))
2423breq1d 3947 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐷𝐶)) < 𝑥))
2524imbi2d 229 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2625ralbidva 2434 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2726rexbidv 2439 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2827ralbidv 2438 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2928anbi2d 460 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
307, 16, 293bitrd 213 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1332  wcel 1481  wral 2417  wrex 2418  csb 3007  wss 3076   class class class wbr 3937  cmpt 3997  wf 5127  cfv 5131  (class class class)co 5782  cc 7642   < clt 7824  cmin 7957   # cap 8367  +crp 9470  abscabs 10801   lim climc 12831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-fv 5139  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pm 6553  df-limced 12833
This theorem is referenced by:  limccnp2cntop  12854  limccoap  12855
  Copyright terms: Public domain W3C validator