ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcmpted GIF version

Theorem limcmpted 13102
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
Hypotheses
Ref Expression
limcmpted.a (𝜑𝐴 ⊆ ℂ)
limcmpted.b (𝜑𝐵 ∈ ℂ)
limcmpted.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
limcmpted (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐷(𝑧)

Proof of Theorem limcmpted
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2299 . . . . . 6 𝑤𝐷
2 nfcsb1v 3064 . . . . . 6 𝑧𝑤 / 𝑧𝐷
3 csbeq1a 3040 . . . . . 6 (𝑧 = 𝑤𝐷 = 𝑤 / 𝑧𝐷)
41, 2, 3cbvmpt 4061 . . . . 5 (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
54a1i 9 . . . 4 (𝜑 → (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷))
65oveq1d 5841 . . 3 (𝜑 → ((𝑧𝐴𝐷) lim 𝐵) = ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵))
76eleq2d 2227 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ 𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵)))
8 limcmpted.f . . . . 5 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
98fmpttd 5624 . . . 4 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
104feq1i 5314 . . . 4 ((𝑧𝐴𝐷):𝐴⟶ℂ ↔ (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
119, 10sylib 121 . . 3 (𝜑 → (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
12 limcmpted.a . . 3 (𝜑𝐴 ⊆ ℂ)
13 limcmpted.b . . 3 (𝜑𝐵 ∈ ℂ)
14 nfcv 2299 . . . 4 𝑧𝐴
1514, 2nfmpt 4058 . . 3 𝑧(𝑤𝐴𝑤 / 𝑧𝐷)
1611, 12, 13, 15ellimc3apf 13099 . 2 (𝜑 → (𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥))))
17 eqid 2157 . . . . . . . . . 10 (𝑤𝐴𝑤 / 𝑧𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
18 eqcom 2159 . . . . . . . . . . 11 (𝑧 = 𝑤𝑤 = 𝑧)
19 eqcom 2159 . . . . . . . . . . 11 (𝐷 = 𝑤 / 𝑧𝐷𝑤 / 𝑧𝐷 = 𝐷)
203, 18, 193imtr3i 199 . . . . . . . . . 10 (𝑤 = 𝑧𝑤 / 𝑧𝐷 = 𝐷)
21 simpr 109 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧𝐴)
2217, 20, 21, 8fvmptd3 5563 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) = 𝐷)
2322fvoveq1d 5848 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) = (abs‘(𝐷𝐶)))
2423breq1d 3977 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐷𝐶)) < 𝑥))
2524imbi2d 229 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2625ralbidva 2453 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2726rexbidv 2458 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2827ralbidv 2457 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2928anbi2d 460 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
307, 16, 293bitrd 213 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1335  wcel 2128  wral 2435  wrex 2436  csb 3031  wss 3102   class class class wbr 3967  cmpt 4027  wf 5168  cfv 5172  (class class class)co 5826  cc 7732   < clt 7914  cmin 8050   # cap 8460  +crp 9566  abscabs 10908   lim climc 13093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498  ax-cnex 7825
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-fv 5180  df-ov 5829  df-oprab 5830  df-mpo 5831  df-pm 6598  df-limced 13095
This theorem is referenced by:  limccnp2cntop  13116  limccoap  13117
  Copyright terms: Public domain W3C validator