ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcmpted GIF version

Theorem limcmpted 13272
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
Hypotheses
Ref Expression
limcmpted.a (𝜑𝐴 ⊆ ℂ)
limcmpted.b (𝜑𝐵 ∈ ℂ)
limcmpted.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
limcmpted (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐷(𝑧)

Proof of Theorem limcmpted
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2308 . . . . . 6 𝑤𝐷
2 nfcsb1v 3078 . . . . . 6 𝑧𝑤 / 𝑧𝐷
3 csbeq1a 3054 . . . . . 6 (𝑧 = 𝑤𝐷 = 𝑤 / 𝑧𝐷)
41, 2, 3cbvmpt 4077 . . . . 5 (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
54a1i 9 . . . 4 (𝜑 → (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷))
65oveq1d 5857 . . 3 (𝜑 → ((𝑧𝐴𝐷) lim 𝐵) = ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵))
76eleq2d 2236 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ 𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵)))
8 limcmpted.f . . . . 5 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
98fmpttd 5640 . . . 4 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
104feq1i 5330 . . . 4 ((𝑧𝐴𝐷):𝐴⟶ℂ ↔ (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
119, 10sylib 121 . . 3 (𝜑 → (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
12 limcmpted.a . . 3 (𝜑𝐴 ⊆ ℂ)
13 limcmpted.b . . 3 (𝜑𝐵 ∈ ℂ)
14 nfcv 2308 . . . 4 𝑧𝐴
1514, 2nfmpt 4074 . . 3 𝑧(𝑤𝐴𝑤 / 𝑧𝐷)
1611, 12, 13, 15ellimc3apf 13269 . 2 (𝜑 → (𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥))))
17 eqid 2165 . . . . . . . . . 10 (𝑤𝐴𝑤 / 𝑧𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
18 eqcom 2167 . . . . . . . . . . 11 (𝑧 = 𝑤𝑤 = 𝑧)
19 eqcom 2167 . . . . . . . . . . 11 (𝐷 = 𝑤 / 𝑧𝐷𝑤 / 𝑧𝐷 = 𝐷)
203, 18, 193imtr3i 199 . . . . . . . . . 10 (𝑤 = 𝑧𝑤 / 𝑧𝐷 = 𝐷)
21 simpr 109 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧𝐴)
2217, 20, 21, 8fvmptd3 5579 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) = 𝐷)
2322fvoveq1d 5864 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) = (abs‘(𝐷𝐶)))
2423breq1d 3992 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐷𝐶)) < 𝑥))
2524imbi2d 229 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2625ralbidva 2462 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2726rexbidv 2467 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2827ralbidv 2466 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2928anbi2d 460 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
307, 16, 293bitrd 213 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1343  wcel 2136  wral 2444  wrex 2445  csb 3045  wss 3116   class class class wbr 3982  cmpt 4043  wf 5184  cfv 5188  (class class class)co 5842  cc 7751   < clt 7933  cmin 8069   # cap 8479  +crp 9589  abscabs 10939   lim climc 13263
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pm 6617  df-limced 13265
This theorem is referenced by:  limccnp2cntop  13286  limccoap  13287
  Copyright terms: Public domain W3C validator