ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  limcmpted GIF version

Theorem limcmpted 15302
Description: Express the limit operator for a function defined by a mapping, via epsilon-delta. (Contributed by Jim Kingdon, 3-Nov-2023.)
Hypotheses
Ref Expression
limcmpted.a (𝜑𝐴 ⊆ ℂ)
limcmpted.b (𝜑𝐵 ∈ ℂ)
limcmpted.f ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
Assertion
Ref Expression
limcmpted (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Distinct variable groups:   𝑥,𝐴,𝑦,𝑧   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐷,𝑦   𝜑,𝑥,𝑦,𝑧
Allowed substitution hint:   𝐷(𝑧)

Proof of Theorem limcmpted
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2352 . . . . . 6 𝑤𝐷
2 nfcsb1v 3137 . . . . . 6 𝑧𝑤 / 𝑧𝐷
3 csbeq1a 3113 . . . . . 6 (𝑧 = 𝑤𝐷 = 𝑤 / 𝑧𝐷)
41, 2, 3cbvmpt 4158 . . . . 5 (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
54a1i 9 . . . 4 (𝜑 → (𝑧𝐴𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷))
65oveq1d 5989 . . 3 (𝜑 → ((𝑧𝐴𝐷) lim 𝐵) = ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵))
76eleq2d 2279 . 2 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ 𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵)))
8 limcmpted.f . . . . 5 ((𝜑𝑧𝐴) → 𝐷 ∈ ℂ)
98fmpttd 5763 . . . 4 (𝜑 → (𝑧𝐴𝐷):𝐴⟶ℂ)
104feq1i 5442 . . . 4 ((𝑧𝐴𝐷):𝐴⟶ℂ ↔ (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
119, 10sylib 122 . . 3 (𝜑 → (𝑤𝐴𝑤 / 𝑧𝐷):𝐴⟶ℂ)
12 limcmpted.a . . 3 (𝜑𝐴 ⊆ ℂ)
13 limcmpted.b . . 3 (𝜑𝐵 ∈ ℂ)
14 nfcv 2352 . . . 4 𝑧𝐴
1514, 2nfmpt 4155 . . 3 𝑧(𝑤𝐴𝑤 / 𝑧𝐷)
1611, 12, 13, 15ellimc3apf 15299 . 2 (𝜑 → (𝐶 ∈ ((𝑤𝐴𝑤 / 𝑧𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥))))
17 eqid 2209 . . . . . . . . . 10 (𝑤𝐴𝑤 / 𝑧𝐷) = (𝑤𝐴𝑤 / 𝑧𝐷)
18 eqcom 2211 . . . . . . . . . . 11 (𝑧 = 𝑤𝑤 = 𝑧)
19 eqcom 2211 . . . . . . . . . . 11 (𝐷 = 𝑤 / 𝑧𝐷𝑤 / 𝑧𝐷 = 𝐷)
203, 18, 193imtr3i 200 . . . . . . . . . 10 (𝑤 = 𝑧𝑤 / 𝑧𝐷 = 𝐷)
21 simpr 110 . . . . . . . . . 10 ((𝜑𝑧𝐴) → 𝑧𝐴)
2217, 20, 21, 8fvmptd3 5701 . . . . . . . . 9 ((𝜑𝑧𝐴) → ((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) = 𝐷)
2322fvoveq1d 5996 . . . . . . . 8 ((𝜑𝑧𝐴) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) = (abs‘(𝐷𝐶)))
2423breq1d 4072 . . . . . . 7 ((𝜑𝑧𝐴) → ((abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥 ↔ (abs‘(𝐷𝐶)) < 𝑥))
2524imbi2d 230 . . . . . 6 ((𝜑𝑧𝐴) → (((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2625ralbidva 2506 . . . . 5 (𝜑 → (∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2726rexbidv 2511 . . . 4 (𝜑 → (∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∃𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2827ralbidv 2510 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥)))
2928anbi2d 464 . 2 (𝜑 → ((𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(((𝑤𝐴𝑤 / 𝑧𝐷)‘𝑧) − 𝐶)) < 𝑥)) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
307, 16, 293bitrd 214 1 (𝜑 → (𝐶 ∈ ((𝑧𝐴𝐷) lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘(𝐷𝐶)) < 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  wral 2488  wrex 2489  csb 3104  wss 3177   class class class wbr 4062  cmpt 4124  wf 5290  cfv 5294  (class class class)co 5974  cc 7965   < clt 8149  cmin 8285   # cap 8696  +crp 9817  abscabs 11474   lim climc 15293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-pm 6768  df-limced 15295
This theorem is referenced by:  limccnp2cntop  15316  limccoap  15317
  Copyright terms: Public domain W3C validator