Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  moimv GIF version

Theorem moimv 2072
 Description: Move antecedent outside of "at most one." (Contributed by NM, 28-Jul-1995.)
Assertion
Ref Expression
moimv (∃*𝑥(𝜑𝜓) → (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moimv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . . . . . 7 (𝜓 → (𝜑𝜓))
21a1i 9 . . . . . 6 (𝜑 → (𝜓 → (𝜑𝜓)))
32sbimi 1744 . . . . . . 7 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜓 → (𝜑𝜓)))
4 nfv 1508 . . . . . . . 8 𝑥𝜑
54sbf 1757 . . . . . . 7 ([𝑦 / 𝑥]𝜑𝜑)
6 sbim 1933 . . . . . . 7 ([𝑦 / 𝑥](𝜓 → (𝜑𝜓)) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
73, 5, 63imtr3i 199 . . . . . 6 (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
82, 7anim12d 333 . . . . 5 (𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → ((𝜑𝜓) ∧ [𝑦 / 𝑥](𝜑𝜓))))
98imim1d 75 . . . 4 (𝜑 → ((((𝜑𝜓) ∧ [𝑦 / 𝑥](𝜑𝜓)) → 𝑥 = 𝑦) → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)))
1092alimdv 1861 . . 3 (𝜑 → (∀𝑥𝑦(((𝜑𝜓) ∧ [𝑦 / 𝑥](𝜑𝜓)) → 𝑥 = 𝑦) → ∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)))
11 ax-17 1506 . . . 4 ((𝜑𝜓) → ∀𝑦(𝜑𝜓))
1211mo3h 2059 . . 3 (∃*𝑥(𝜑𝜓) ↔ ∀𝑥𝑦(((𝜑𝜓) ∧ [𝑦 / 𝑥](𝜑𝜓)) → 𝑥 = 𝑦))
13 ax-17 1506 . . . 4 (𝜓 → ∀𝑦𝜓)
1413mo3h 2059 . . 3 (∃*𝑥𝜓 ↔ ∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))
1510, 12, 143imtr4g 204 . 2 (𝜑 → (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜓))
1615com12 30 1 (∃*𝑥(𝜑𝜓) → (𝜑 → ∃*𝑥𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 103  ∀wal 1333  [wsb 1742  ∃*wmo 2007 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515 This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator