ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  moimv GIF version

Theorem moimv 2104
Description: Move antecedent outside of "at most one". (Contributed by NM, 28-Jul-1995.)
Assertion
Ref Expression
moimv (∃*𝑥(𝜑𝜓) → (𝜑 → ∃*𝑥𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem moimv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . . . . . . 7 (𝜓 → (𝜑𝜓))
21a1i 9 . . . . . 6 (𝜑 → (𝜓 → (𝜑𝜓)))
32sbimi 1775 . . . . . . 7 ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜓 → (𝜑𝜓)))
4 nfv 1539 . . . . . . . 8 𝑥𝜑
54sbf 1788 . . . . . . 7 ([𝑦 / 𝑥]𝜑𝜑)
6 sbim 1965 . . . . . . 7 ([𝑦 / 𝑥](𝜓 → (𝜑𝜓)) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
73, 5, 63imtr3i 200 . . . . . 6 (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑𝜓)))
82, 7anim12d 335 . . . . 5 (𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → ((𝜑𝜓) ∧ [𝑦 / 𝑥](𝜑𝜓))))
98imim1d 75 . . . 4 (𝜑 → ((((𝜑𝜓) ∧ [𝑦 / 𝑥](𝜑𝜓)) → 𝑥 = 𝑦) → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)))
1092alimdv 1892 . . 3 (𝜑 → (∀𝑥𝑦(((𝜑𝜓) ∧ [𝑦 / 𝑥](𝜑𝜓)) → 𝑥 = 𝑦) → ∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)))
11 ax-17 1537 . . . 4 ((𝜑𝜓) → ∀𝑦(𝜑𝜓))
1211mo3h 2091 . . 3 (∃*𝑥(𝜑𝜓) ↔ ∀𝑥𝑦(((𝜑𝜓) ∧ [𝑦 / 𝑥](𝜑𝜓)) → 𝑥 = 𝑦))
13 ax-17 1537 . . . 4 (𝜓 → ∀𝑦𝜓)
1413mo3h 2091 . . 3 (∃*𝑥𝜓 ↔ ∀𝑥𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))
1510, 12, 143imtr4g 205 . 2 (𝜑 → (∃*𝑥(𝜑𝜓) → ∃*𝑥𝜓))
1615com12 30 1 (∃*𝑥(𝜑𝜓) → (𝜑 → ∃*𝑥𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1362  [wsb 1773  ∃*wmo 2039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator