| Step | Hyp | Ref
 | Expression | 
| 1 |   | ax-1 6 | 
. . . . . . 7
⊢ (𝜓 → (𝜑 → 𝜓)) | 
| 2 | 1 | a1i 9 | 
. . . . . 6
⊢ (𝜑 → (𝜓 → (𝜑 → 𝜓))) | 
| 3 | 2 | sbimi 1778 | 
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜓 → (𝜑 → 𝜓))) | 
| 4 |   | nfv 1542 | 
. . . . . . . 8
⊢
Ⅎ𝑥𝜑 | 
| 5 | 4 | sbf 1791 | 
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | 
| 6 |   | sbim 1972 | 
. . . . . . 7
⊢ ([𝑦 / 𝑥](𝜓 → (𝜑 → 𝜓)) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 → 𝜓))) | 
| 7 | 3, 5, 6 | 3imtr3i 200 | 
. . . . . 6
⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 → 𝜓))) | 
| 8 | 2, 7 | anim12d 335 | 
. . . . 5
⊢ (𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → ((𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜑 → 𝜓)))) | 
| 9 | 8 | imim1d 75 | 
. . . 4
⊢ (𝜑 → ((((𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜑 → 𝜓)) → 𝑥 = 𝑦) → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) | 
| 10 | 9 | 2alimdv 1895 | 
. . 3
⊢ (𝜑 → (∀𝑥∀𝑦(((𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜑 → 𝜓)) → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) | 
| 11 |   | ax-17 1540 | 
. . . 4
⊢ ((𝜑 → 𝜓) → ∀𝑦(𝜑 → 𝜓)) | 
| 12 | 11 | mo3h 2098 | 
. . 3
⊢
(∃*𝑥(𝜑 → 𝜓) ↔ ∀𝑥∀𝑦(((𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜑 → 𝜓)) → 𝑥 = 𝑦)) | 
| 13 |   | ax-17 1540 | 
. . . 4
⊢ (𝜓 → ∀𝑦𝜓) | 
| 14 | 13 | mo3h 2098 | 
. . 3
⊢
(∃*𝑥𝜓 ↔ ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) | 
| 15 | 10, 12, 14 | 3imtr4g 205 | 
. 2
⊢ (𝜑 → (∃*𝑥(𝜑 → 𝜓) → ∃*𝑥𝜓)) | 
| 16 | 15 | com12 30 | 
1
⊢
(∃*𝑥(𝜑 → 𝜓) → (𝜑 → ∃*𝑥𝜓)) |