Step | Hyp | Ref
| Expression |
1 | | ax-1 6 |
. . . . . . 7
⊢ (𝜓 → (𝜑 → 𝜓)) |
2 | 1 | a1i 9 |
. . . . . 6
⊢ (𝜑 → (𝜓 → (𝜑 → 𝜓))) |
3 | 2 | sbimi 1744 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥](𝜓 → (𝜑 → 𝜓))) |
4 | | nfv 1508 |
. . . . . . . 8
⊢
Ⅎ𝑥𝜑 |
5 | 4 | sbf 1757 |
. . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
6 | | sbim 1933 |
. . . . . . 7
⊢ ([𝑦 / 𝑥](𝜓 → (𝜑 → 𝜓)) ↔ ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 → 𝜓))) |
7 | 3, 5, 6 | 3imtr3i 199 |
. . . . . 6
⊢ (𝜑 → ([𝑦 / 𝑥]𝜓 → [𝑦 / 𝑥](𝜑 → 𝜓))) |
8 | 2, 7 | anim12d 333 |
. . . . 5
⊢ (𝜑 → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → ((𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜑 → 𝜓)))) |
9 | 8 | imim1d 75 |
. . . 4
⊢ (𝜑 → ((((𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜑 → 𝜓)) → 𝑥 = 𝑦) → ((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
10 | 9 | 2alimdv 1861 |
. . 3
⊢ (𝜑 → (∀𝑥∀𝑦(((𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜑 → 𝜓)) → 𝑥 = 𝑦) → ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦))) |
11 | | ax-17 1506 |
. . . 4
⊢ ((𝜑 → 𝜓) → ∀𝑦(𝜑 → 𝜓)) |
12 | 11 | mo3h 2059 |
. . 3
⊢
(∃*𝑥(𝜑 → 𝜓) ↔ ∀𝑥∀𝑦(((𝜑 → 𝜓) ∧ [𝑦 / 𝑥](𝜑 → 𝜓)) → 𝑥 = 𝑦)) |
13 | | ax-17 1506 |
. . . 4
⊢ (𝜓 → ∀𝑦𝜓) |
14 | 13 | mo3h 2059 |
. . 3
⊢
(∃*𝑥𝜓 ↔ ∀𝑥∀𝑦((𝜓 ∧ [𝑦 / 𝑥]𝜓) → 𝑥 = 𝑦)) |
15 | 10, 12, 14 | 3imtr4g 204 |
. 2
⊢ (𝜑 → (∃*𝑥(𝜑 → 𝜓) → ∃*𝑥𝜓)) |
16 | 15 | com12 30 |
1
⊢
(∃*𝑥(𝜑 → 𝜓) → (𝜑 → ∃*𝑥𝜓)) |