ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemle GIF version

Theorem bezoutlemle 11090
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemle (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 108 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐴𝑧𝐵))
2 breq1 3840 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
3 breq1 3840 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
4 breq1 3840 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
53, 4anbi12d 457 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
62, 5bibi12d 233 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))))
7 equcom 1639 . . . . . . 7 (𝑧 = 𝑤𝑤 = 𝑧)
8 bicom 138 . . . . . . 7 (((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))) ↔ ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
96, 7, 83imtr3i 198 . . . . . 6 (𝑤 = 𝑧 → ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
10 bezoutlemgcd.4 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
116cbvralv 2590 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1210, 11sylib 120 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1312ad2antrr 472 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
14 simplr 497 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧 ∈ ℤ)
159, 13, 14rspcdva 2727 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
161, 15mpbird 165 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
17 bezoutlemgcd.3 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1817ad2antrr 472 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ0)
19 bezoutlemgcd.5 . . . . . . . . 9 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2019ad2antrr 472 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
21 breq1 3840 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝐷 ↔ 0 ∥ 𝐷))
22 breq1 3840 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐴 ↔ 0 ∥ 𝐴))
23 breq1 3840 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐵 ↔ 0 ∥ 𝐵))
2422, 23anbi12d 457 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧𝐴𝑧𝐵) ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2521, 24bibi12d 233 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵))))
26 0zd 8732 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
2725, 10, 26rspcdva 2727 . . . . . . . . . 10 (𝜑 → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2827ad2antrr 472 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2918nn0zd 8836 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℤ)
30 0dvds 10909 . . . . . . . . . 10 (𝐷 ∈ ℤ → (0 ∥ 𝐷𝐷 = 0))
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷𝐷 = 0))
32 bezoutlemgcd.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3332ad2antrr 472 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐴 ∈ ℤ)
34 0dvds 10909 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ∥ 𝐴𝐴 = 0))
3533, 34syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐴𝐴 = 0))
36 bezoutlemgcd.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
3736ad2antrr 472 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐵 ∈ ℤ)
38 0dvds 10909 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
3937, 38syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐵𝐵 = 0))
4035, 39anbi12d 457 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ((0 ∥ 𝐴 ∧ 0 ∥ 𝐵) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4128, 31, 403bitr3d 216 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝐷 = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4220, 41mtbird 633 . . . . . . 7 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ 𝐷 = 0)
4342neqned 2262 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ≠ 0)
44 elnnne0 8657 . . . . . 6 (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℕ0𝐷 ≠ 0))
4518, 43, 44sylanbrc 408 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ)
46 dvdsle 10938 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧𝐷𝑧𝐷))
4714, 45, 46syl2anc 403 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷𝑧𝐷))
4816, 47mpd 13 . . 3 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
4948ex 113 . 2 ((𝜑𝑧 ∈ ℤ) → ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
5049ralrimiva 2446 1 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1289  wcel 1438  wne 2255  wral 2359   class class class wbr 3837  0cc0 7329  cle 7502  cn 8394  0cn0 8643  cz 8720  cdvds 10889
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-nul 3285  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-q 9074  df-dvds 10890
This theorem is referenced by:  bezoutlemsup  11091
  Copyright terms: Public domain W3C validator