Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemle GIF version

Theorem bezoutlemle 11681
 Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemle (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 109 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐴𝑧𝐵))
2 breq1 3927 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
3 breq1 3927 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
4 breq1 3927 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
53, 4anbi12d 464 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
62, 5bibi12d 234 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))))
7 equcom 1682 . . . . . . 7 (𝑧 = 𝑤𝑤 = 𝑧)
8 bicom 139 . . . . . . 7 (((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))) ↔ ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
96, 7, 83imtr3i 199 . . . . . 6 (𝑤 = 𝑧 → ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
10 bezoutlemgcd.4 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
116cbvralv 2652 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1210, 11sylib 121 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1312ad2antrr 479 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
14 simplr 519 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧 ∈ ℤ)
159, 13, 14rspcdva 2789 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
161, 15mpbird 166 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
17 bezoutlemgcd.3 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1817ad2antrr 479 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ0)
19 bezoutlemgcd.5 . . . . . . . . 9 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2019ad2antrr 479 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
21 breq1 3927 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝐷 ↔ 0 ∥ 𝐷))
22 breq1 3927 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐴 ↔ 0 ∥ 𝐴))
23 breq1 3927 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐵 ↔ 0 ∥ 𝐵))
2422, 23anbi12d 464 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧𝐴𝑧𝐵) ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2521, 24bibi12d 234 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵))))
26 0zd 9059 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
2725, 10, 26rspcdva 2789 . . . . . . . . . 10 (𝜑 → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2827ad2antrr 479 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2918nn0zd 9164 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℤ)
30 0dvds 11498 . . . . . . . . . 10 (𝐷 ∈ ℤ → (0 ∥ 𝐷𝐷 = 0))
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷𝐷 = 0))
32 bezoutlemgcd.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3332ad2antrr 479 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐴 ∈ ℤ)
34 0dvds 11498 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ∥ 𝐴𝐴 = 0))
3533, 34syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐴𝐴 = 0))
36 bezoutlemgcd.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
3736ad2antrr 479 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐵 ∈ ℤ)
38 0dvds 11498 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
3937, 38syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐵𝐵 = 0))
4035, 39anbi12d 464 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ((0 ∥ 𝐴 ∧ 0 ∥ 𝐵) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4128, 31, 403bitr3d 217 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝐷 = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4220, 41mtbird 662 . . . . . . 7 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ 𝐷 = 0)
4342neqned 2313 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ≠ 0)
44 elnnne0 8984 . . . . . 6 (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℕ0𝐷 ≠ 0))
4518, 43, 44sylanbrc 413 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ)
46 dvdsle 11527 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧𝐷𝑧𝐷))
4714, 45, 46syl2anc 408 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷𝑧𝐷))
4816, 47mpd 13 . . 3 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
4948ex 114 . 2 ((𝜑𝑧 ∈ ℤ) → ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
5049ralrimiva 2503 1 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 103   ↔ wb 104   = wceq 1331   ∈ wcel 1480   ≠ wne 2306  ∀wral 2414   class class class wbr 3924  0cc0 7613   ≤ cle 7794  ℕcn 8713  ℕ0cn0 8970  ℤcz 9047   ∥ cdvds 11478 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731 This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-po 4213  df-iso 4214  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-n0 8971  df-z 9048  df-q 9405  df-dvds 11479 This theorem is referenced by:  bezoutlemsup  11682
 Copyright terms: Public domain W3C validator