| Step | Hyp | Ref
 | Expression | 
| 1 |   | simpr 110 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) | 
| 2 |   | breq1 4036 | 
. . . . . . . 8
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐷 ↔ 𝑤 ∥ 𝐷)) | 
| 3 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐴 ↔ 𝑤 ∥ 𝐴)) | 
| 4 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑧 = 𝑤 → (𝑧 ∥ 𝐵 ↔ 𝑤 ∥ 𝐵)) | 
| 5 | 3, 4 | anbi12d 473 | 
. . . . . . . 8
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 6 | 2, 5 | bibi12d 235 | 
. . . . . . 7
⊢ (𝑧 = 𝑤 → ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑤 ∥ 𝐷 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)))) | 
| 7 |   | equcom 1720 | 
. . . . . . 7
⊢ (𝑧 = 𝑤 ↔ 𝑤 = 𝑧) | 
| 8 |   | bicom 140 | 
. . . . . . 7
⊢ (((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (𝑤 ∥ 𝐷 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) ↔ ((𝑤 ∥ 𝐷 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)) ↔ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 9 | 6, 7, 8 | 3imtr3i 200 | 
. . . . . 6
⊢ (𝑤 = 𝑧 → ((𝑤 ∥ 𝐷 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵)) ↔ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)))) | 
| 10 |   | bezoutlemgcd.4 | 
. . . . . . . 8
⊢ (𝜑 → ∀𝑧 ∈ ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 11 | 6 | cbvralv 2729 | 
. . . . . . . 8
⊢
(∀𝑧 ∈
ℤ (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤 ∥ 𝐷 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 12 | 10, 11 | sylib 122 | 
. . . . . . 7
⊢ (𝜑 → ∀𝑤 ∈ ℤ (𝑤 ∥ 𝐷 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 13 | 12 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → ∀𝑤 ∈ ℤ (𝑤 ∥ 𝐷 ↔ (𝑤 ∥ 𝐴 ∧ 𝑤 ∥ 𝐵))) | 
| 14 |   | simplr 528 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝑧 ∈ ℤ) | 
| 15 | 9, 13, 14 | rspcdva 2873 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → (𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵))) | 
| 16 | 1, 15 | mpbird 167 | 
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝑧 ∥ 𝐷) | 
| 17 |   | bezoutlemgcd.3 | 
. . . . . . 7
⊢ (𝜑 → 𝐷 ∈
ℕ0) | 
| 18 | 17 | ad2antrr 488 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝐷 ∈
ℕ0) | 
| 19 |   | bezoutlemgcd.5 | 
. . . . . . . . 9
⊢ (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | 
| 20 | 19 | ad2antrr 488 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) | 
| 21 |   | breq1 4036 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 0 → (𝑧 ∥ 𝐷 ↔ 0 ∥ 𝐷)) | 
| 22 |   | breq1 4036 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 0 → (𝑧 ∥ 𝐴 ↔ 0 ∥ 𝐴)) | 
| 23 |   | breq1 4036 | 
. . . . . . . . . . . . 13
⊢ (𝑧 = 0 → (𝑧 ∥ 𝐵 ↔ 0 ∥ 𝐵)) | 
| 24 | 22, 23 | anbi12d 473 | 
. . . . . . . . . . . 12
⊢ (𝑧 = 0 → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵))) | 
| 25 | 21, 24 | bibi12d 235 | 
. . . . . . . . . . 11
⊢ (𝑧 = 0 → ((𝑧 ∥ 𝐷 ↔ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) ↔ (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))) | 
| 26 |   | 0zd 9338 | 
. . . . . . . . . . 11
⊢ (𝜑 → 0 ∈
ℤ) | 
| 27 | 25, 10, 26 | rspcdva 2873 | 
. . . . . . . . . 10
⊢ (𝜑 → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵))) | 
| 28 | 27 | ad2antrr 488 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵))) | 
| 29 | 18 | nn0zd 9446 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝐷 ∈ ℤ) | 
| 30 |   | 0dvds 11976 | 
. . . . . . . . . 10
⊢ (𝐷 ∈ ℤ → (0
∥ 𝐷 ↔ 𝐷 = 0)) | 
| 31 | 29, 30 | syl 14 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → (0 ∥ 𝐷 ↔ 𝐷 = 0)) | 
| 32 |   | bezoutlemgcd.1 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ∈ ℤ) | 
| 33 | 32 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝐴 ∈ ℤ) | 
| 34 |   | 0dvds 11976 | 
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℤ → (0
∥ 𝐴 ↔ 𝐴 = 0)) | 
| 35 | 33, 34 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → (0 ∥ 𝐴 ↔ 𝐴 = 0)) | 
| 36 |   | bezoutlemgcd.2 | 
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℤ) | 
| 37 | 36 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝐵 ∈ ℤ) | 
| 38 |   | 0dvds 11976 | 
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℤ → (0
∥ 𝐵 ↔ 𝐵 = 0)) | 
| 39 | 37, 38 | syl 14 | 
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → (0 ∥ 𝐵 ↔ 𝐵 = 0)) | 
| 40 | 35, 39 | anbi12d 473 | 
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → ((0 ∥ 𝐴 ∧ 0 ∥ 𝐵) ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | 
| 41 | 28, 31, 40 | 3bitr3d 218 | 
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → (𝐷 = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) | 
| 42 | 20, 41 | mtbird 674 | 
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → ¬ 𝐷 = 0) | 
| 43 | 42 | neqned 2374 | 
. . . . . 6
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝐷 ≠ 0) | 
| 44 |   | elnnne0 9263 | 
. . . . . 6
⊢ (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℕ0
∧ 𝐷 ≠
0)) | 
| 45 | 18, 43, 44 | sylanbrc 417 | 
. . . . 5
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝐷 ∈ ℕ) | 
| 46 |   | dvdsle 12009 | 
. . . . 5
⊢ ((𝑧 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧 ∥ 𝐷 → 𝑧 ≤ 𝐷)) | 
| 47 | 14, 45, 46 | syl2anc 411 | 
. . . 4
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → (𝑧 ∥ 𝐷 → 𝑧 ≤ 𝐷)) | 
| 48 | 16, 47 | mpd 13 | 
. . 3
⊢ (((𝜑 ∧ 𝑧 ∈ ℤ) ∧ (𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵)) → 𝑧 ≤ 𝐷) | 
| 49 | 48 | ex 115 | 
. 2
⊢ ((𝜑 ∧ 𝑧 ∈ ℤ) → ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷)) | 
| 50 | 49 | ralrimiva 2570 | 
1
⊢ (𝜑 → ∀𝑧 ∈ ℤ ((𝑧 ∥ 𝐴 ∧ 𝑧 ∥ 𝐵) → 𝑧 ≤ 𝐷)) |