ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bezoutlemle GIF version

Theorem bezoutlemle 12529
Description: Lemma for Bézout's identity. The number satisfying the greatest common divisor condition is the largest number which divides both 𝐴 and 𝐵. (Contributed by Mario Carneiro and Jim Kingdon, 9-Jan-2022.)
Hypotheses
Ref Expression
bezoutlemgcd.1 (𝜑𝐴 ∈ ℤ)
bezoutlemgcd.2 (𝜑𝐵 ∈ ℤ)
bezoutlemgcd.3 (𝜑𝐷 ∈ ℕ0)
bezoutlemgcd.4 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
bezoutlemgcd.5 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
Assertion
Ref Expression
bezoutlemle (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Distinct variable groups:   𝑧,𝐷   𝑧,𝐴   𝑧,𝐵   𝜑,𝑧

Proof of Theorem bezoutlemle
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 simpr 110 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐴𝑧𝐵))
2 breq1 4086 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧𝐷𝑤𝐷))
3 breq1 4086 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐴𝑤𝐴))
4 breq1 4086 . . . . . . . . 9 (𝑧 = 𝑤 → (𝑧𝐵𝑤𝐵))
53, 4anbi12d 473 . . . . . . . 8 (𝑧 = 𝑤 → ((𝑧𝐴𝑧𝐵) ↔ (𝑤𝐴𝑤𝐵)))
62, 5bibi12d 235 . . . . . . 7 (𝑧 = 𝑤 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))))
7 equcom 1752 . . . . . . 7 (𝑧 = 𝑤𝑤 = 𝑧)
8 bicom 140 . . . . . . 7 (((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵))) ↔ ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
96, 7, 83imtr3i 200 . . . . . 6 (𝑤 = 𝑧 → ((𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)) ↔ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵))))
10 bezoutlemgcd.4 . . . . . . . 8 (𝜑 → ∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
116cbvralv 2765 . . . . . . . 8 (∀𝑧 ∈ ℤ (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1210, 11sylib 122 . . . . . . 7 (𝜑 → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
1312ad2antrr 488 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ∀𝑤 ∈ ℤ (𝑤𝐷 ↔ (𝑤𝐴𝑤𝐵)))
14 simplr 528 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧 ∈ ℤ)
159, 13, 14rspcdva 2912 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)))
161, 15mpbird 167 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
17 bezoutlemgcd.3 . . . . . . 7 (𝜑𝐷 ∈ ℕ0)
1817ad2antrr 488 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ0)
19 bezoutlemgcd.5 . . . . . . . . 9 (𝜑 → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2019ad2antrr 488 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
21 breq1 4086 . . . . . . . . . . . 12 (𝑧 = 0 → (𝑧𝐷 ↔ 0 ∥ 𝐷))
22 breq1 4086 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐴 ↔ 0 ∥ 𝐴))
23 breq1 4086 . . . . . . . . . . . . 13 (𝑧 = 0 → (𝑧𝐵 ↔ 0 ∥ 𝐵))
2422, 23anbi12d 473 . . . . . . . . . . . 12 (𝑧 = 0 → ((𝑧𝐴𝑧𝐵) ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2521, 24bibi12d 235 . . . . . . . . . . 11 (𝑧 = 0 → ((𝑧𝐷 ↔ (𝑧𝐴𝑧𝐵)) ↔ (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵))))
26 0zd 9458 . . . . . . . . . . 11 (𝜑 → 0 ∈ ℤ)
2725, 10, 26rspcdva 2912 . . . . . . . . . 10 (𝜑 → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2827ad2antrr 488 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷 ↔ (0 ∥ 𝐴 ∧ 0 ∥ 𝐵)))
2918nn0zd 9567 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℤ)
30 0dvds 12322 . . . . . . . . . 10 (𝐷 ∈ ℤ → (0 ∥ 𝐷𝐷 = 0))
3129, 30syl 14 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐷𝐷 = 0))
32 bezoutlemgcd.1 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℤ)
3332ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐴 ∈ ℤ)
34 0dvds 12322 . . . . . . . . . . 11 (𝐴 ∈ ℤ → (0 ∥ 𝐴𝐴 = 0))
3533, 34syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐴𝐴 = 0))
36 bezoutlemgcd.2 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℤ)
3736ad2antrr 488 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐵 ∈ ℤ)
38 0dvds 12322 . . . . . . . . . . 11 (𝐵 ∈ ℤ → (0 ∥ 𝐵𝐵 = 0))
3937, 38syl 14 . . . . . . . . . 10 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (0 ∥ 𝐵𝐵 = 0))
4035, 39anbi12d 473 . . . . . . . . 9 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ((0 ∥ 𝐴 ∧ 0 ∥ 𝐵) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4128, 31, 403bitr3d 218 . . . . . . . 8 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝐷 = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
4220, 41mtbird 677 . . . . . . 7 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → ¬ 𝐷 = 0)
4342neqned 2407 . . . . . 6 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ≠ 0)
44 elnnne0 9383 . . . . . 6 (𝐷 ∈ ℕ ↔ (𝐷 ∈ ℕ0𝐷 ≠ 0))
4518, 43, 44sylanbrc 417 . . . . 5 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝐷 ∈ ℕ)
46 dvdsle 12355 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝐷 ∈ ℕ) → (𝑧𝐷𝑧𝐷))
4714, 45, 46syl2anc 411 . . . 4 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → (𝑧𝐷𝑧𝐷))
4816, 47mpd 13 . . 3 (((𝜑𝑧 ∈ ℤ) ∧ (𝑧𝐴𝑧𝐵)) → 𝑧𝐷)
4948ex 115 . 2 ((𝜑𝑧 ∈ ℤ) → ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
5049ralrimiva 2603 1 (𝜑 → ∀𝑧 ∈ ℤ ((𝑧𝐴𝑧𝐵) → 𝑧𝐷))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wne 2400  wral 2508   class class class wbr 4083  0cc0 7999  cle 8182  cn 9110  0cn0 9369  cz 9446  cdvds 12298
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-n0 9370  df-z 9447  df-q 9815  df-dvds 12299
This theorem is referenced by:  bezoutlemsup  12530
  Copyright terms: Public domain W3C validator