| Step | Hyp | Ref
 | Expression | 
| 1 |   | df-ral 2480 | 
. . . . . . 7
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴))) | 
| 2 |   | imdi 250 | 
. . . . . . . 8
⊢ ((𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ↔ ((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 3 | 2 | albii 1484 | 
. . . . . . 7
⊢
(∀𝑥(𝑥 ∈ On → (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) ↔ ∀𝑥((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 4 | 1, 3 | bitri 184 | 
. . . . . 6
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 5 |   | dfss2 3172 | 
. . . . . . . . . 10
⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) | 
| 6 | 5 | imbi2i 226 | 
. . . . . . . . 9
⊢ ((𝑥 ∈ On → 𝑥 ⊆ 𝐴) ↔ (𝑥 ∈ On → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) | 
| 7 |   | 19.21v 1887 | 
. . . . . . . . 9
⊢
(∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) ↔ (𝑥 ∈ On → ∀𝑦(𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) | 
| 8 | 6, 7 | bitr4i 187 | 
. . . . . . . 8
⊢ ((𝑥 ∈ On → 𝑥 ⊆ 𝐴) ↔ ∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) | 
| 9 | 8 | imbi1i 238 | 
. . . . . . 7
⊢ (((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) ↔ (∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 10 | 9 | albii 1484 | 
. . . . . 6
⊢
(∀𝑥((𝑥 ∈ On → 𝑥 ⊆ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) ↔ ∀𝑥(∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 11 | 4, 10 | bitri 184 | 
. . . . 5
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) ↔ ∀𝑥(∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 12 |   | simpl 109 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝑥) | 
| 13 |   | tron 4417 | 
. . . . . . . . . . . . . 14
⊢ Tr
On | 
| 14 |   | dftr2 4133 | 
. . . . . . . . . . . . . 14
⊢ (Tr On
↔ ∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ On)) | 
| 15 | 13, 14 | mpbi 145 | 
. . . . . . . . . . . . 13
⊢
∀𝑦∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ On) | 
| 16 | 15 | spi 1550 | 
. . . . . . . . . . . 12
⊢
∀𝑥((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ On) | 
| 17 | 16 | spi 1550 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ On) | 
| 18 | 12, 17 | jca 306 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → (𝑦 ∈ 𝑥 ∧ 𝑦 ∈ On)) | 
| 19 | 18 | imim1i 60 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑦 ∈ On) → 𝑦 ∈ 𝐴) → ((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝐴)) | 
| 20 |   | impexp 263 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑦 ∈ On) → 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴))) | 
| 21 |   | impexp 263 | 
. . . . . . . . . 10
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ On → 𝑦 ∈ 𝐴))) | 
| 22 |   | bi2.04 248 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ 𝑥 → (𝑥 ∈ On → 𝑦 ∈ 𝐴)) ↔ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) | 
| 23 | 21, 22 | bitri 184 | 
. . . . . . . . 9
⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ On) → 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) | 
| 24 | 19, 20, 23 | 3imtr3i 200 | 
. . . . . . . 8
⊢ ((𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) | 
| 25 | 24 | alimi 1469 | 
. . . . . . 7
⊢
(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → ∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴))) | 
| 26 | 25 | imim1i 60 | 
. . . . . 6
⊢
((∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → (∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 27 | 26 | alimi 1469 | 
. . . . 5
⊢
(∀𝑥(∀𝑦(𝑥 ∈ On → (𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 28 | 11, 27 | sylbi 121 | 
. . . 4
⊢
(∀𝑥 ∈ On
(𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴) → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 29 | 28 | adantl 277 | 
. . 3
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 30 |   | sbim 1972 | 
. . . . . . . . . 10
⊢ ([𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) ↔ ([𝑦 / 𝑥]𝑥 ∈ On → [𝑦 / 𝑥]𝑥 ∈ 𝐴)) | 
| 31 |   | clelsb1 2301 | 
. . . . . . . . . . 11
⊢ ([𝑦 / 𝑥]𝑥 ∈ On ↔ 𝑦 ∈ On) | 
| 32 |   | clelsb1 2301 | 
. . . . . . . . . . 11
⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | 
| 33 | 31, 32 | imbi12i 239 | 
. . . . . . . . . 10
⊢ (([𝑦 / 𝑥]𝑥 ∈ On → [𝑦 / 𝑥]𝑥 ∈ 𝐴) ↔ (𝑦 ∈ On → 𝑦 ∈ 𝐴)) | 
| 34 | 30, 33 | bitri 184 | 
. . . . . . . . 9
⊢ ([𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) ↔ (𝑦 ∈ On → 𝑦 ∈ 𝐴)) | 
| 35 | 34 | ralbii 2503 | 
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) ↔ ∀𝑦 ∈ 𝑥 (𝑦 ∈ On → 𝑦 ∈ 𝐴)) | 
| 36 |   | df-ral 2480 | 
. . . . . . . 8
⊢
(∀𝑦 ∈
𝑥 (𝑦 ∈ On → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴))) | 
| 37 | 35, 36 | bitri 184 | 
. . . . . . 7
⊢
(∀𝑦 ∈
𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴))) | 
| 38 | 37 | imbi1i 238 | 
. . . . . 6
⊢
((∀𝑦 ∈
𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) ↔ (∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 39 | 38 | albii 1484 | 
. . . . 5
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) ↔ ∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴))) | 
| 40 |   | ax-setind 4573 | 
. . . . 5
⊢
(∀𝑥(∀𝑦 ∈ 𝑥 [𝑦 / 𝑥](𝑥 ∈ On → 𝑥 ∈ 𝐴) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → ∀𝑥(𝑥 ∈ On → 𝑥 ∈ 𝐴)) | 
| 41 | 39, 40 | sylbir 135 | 
. . . 4
⊢
(∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → ∀𝑥(𝑥 ∈ On → 𝑥 ∈ 𝐴)) | 
| 42 |   | dfss2 3172 | 
. . . 4
⊢ (On
⊆ 𝐴 ↔
∀𝑥(𝑥 ∈ On → 𝑥 ∈ 𝐴)) | 
| 43 | 41, 42 | sylibr 134 | 
. . 3
⊢
(∀𝑥(∀𝑦(𝑦 ∈ 𝑥 → (𝑦 ∈ On → 𝑦 ∈ 𝐴)) → (𝑥 ∈ On → 𝑥 ∈ 𝐴)) → On ⊆ 𝐴) | 
| 44 | 29, 43 | syl 14 | 
. 2
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → On ⊆ 𝐴) | 
| 45 |   | eqss 3198 | 
. . 3
⊢ (𝐴 = On ↔ (𝐴 ⊆ On ∧ On ⊆ 𝐴)) | 
| 46 | 45 | biimpri 133 | 
. 2
⊢ ((𝐴 ⊆ On ∧ On ⊆
𝐴) → 𝐴 = On) | 
| 47 | 44, 46 | syldan 282 | 
1
⊢ ((𝐴 ⊆ On ∧ ∀𝑥 ∈ On (𝑥 ⊆ 𝐴 → 𝑥 ∈ 𝐴)) → 𝐴 = On) |