ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq3sgn GIF version

Theorem sincosq3sgn 13916
Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq3sgn (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))

Proof of Theorem sincosq3sgn
StepHypRef Expression
1 pire 13874 . . 3 π ∈ ℝ
2 3re 8982 . . . 4 3 ∈ ℝ
3 halfpire 13880 . . . 4 (π / 2) ∈ ℝ
42, 3remulcli 7962 . . 3 (3 · (π / 2)) ∈ ℝ
5 rexr 7993 . . . 4 (π ∈ ℝ → π ∈ ℝ*)
6 rexr 7993 . . . 4 ((3 · (π / 2)) ∈ ℝ → (3 · (π / 2)) ∈ ℝ*)
7 elioo2 9908 . . . 4 ((π ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2)))))
85, 6, 7syl2an 289 . . 3 ((π ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ) → (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2)))))
91, 4, 8mp2an 426 . 2 (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2))))
10 pidiv2halves 13883 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
1110breq1i 4007 . . . . . . . 8 (((π / 2) + (π / 2)) < 𝐴 ↔ π < 𝐴)
12 ltaddsub 8383 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((π / 2) + (π / 2)) < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
133, 3, 12mp3an12 1327 . . . . . . . 8 (𝐴 ∈ ℝ → (((π / 2) + (π / 2)) < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
1411, 13bitr3id 194 . . . . . . 7 (𝐴 ∈ ℝ → (π < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
15 ltsubadd 8379 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − (π / 2)) < π ↔ 𝐴 < (π + (π / 2))))
163, 1, 15mp3an23 1329 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < π ↔ 𝐴 < (π + (π / 2))))
17 df-3 8968 . . . . . . . . . . 11 3 = (2 + 1)
1817oveq1i 5879 . . . . . . . . . 10 (3 · (π / 2)) = ((2 + 1) · (π / 2))
19 2cn 8979 . . . . . . . . . . 11 2 ∈ ℂ
20 ax-1cn 7895 . . . . . . . . . . 11 1 ∈ ℂ
213recni 7960 . . . . . . . . . . 11 (π / 2) ∈ ℂ
2219, 20, 21adddiri 7959 . . . . . . . . . 10 ((2 + 1) · (π / 2)) = ((2 · (π / 2)) + (1 · (π / 2)))
231recni 7960 . . . . . . . . . . . 12 π ∈ ℂ
24 2ap0 9001 . . . . . . . . . . . 12 2 # 0
2523, 19, 24divcanap2i 8701 . . . . . . . . . . 11 (2 · (π / 2)) = π
2621mulid2i 7951 . . . . . . . . . . 11 (1 · (π / 2)) = (π / 2)
2725, 26oveq12i 5881 . . . . . . . . . 10 ((2 · (π / 2)) + (1 · (π / 2))) = (π + (π / 2))
2818, 22, 273eqtrri 2203 . . . . . . . . 9 (π + (π / 2)) = (3 · (π / 2))
2928breq2i 4008 . . . . . . . 8 (𝐴 < (π + (π / 2)) ↔ 𝐴 < (3 · (π / 2)))
3016, 29bitr2di 197 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < (3 · (π / 2)) ↔ (𝐴 − (π / 2)) < π))
3114, 30anbi12d 473 . . . . . 6 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) ↔ ((π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
32 resubcl 8211 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
333, 32mpan2 425 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
34 sincosq2sgn 13915 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) → (0 < (sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0))
35 rexr 7993 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
36 elioo2 9908 . . . . . . . . . . 11 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
3735, 5, 36syl2an 289 . . . . . . . . . 10 (((π / 2) ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
383, 1, 37mp2an 426 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π))
39 ancom 266 . . . . . . . . 9 ((0 < (sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
4034, 38, 393imtr3i 200 . . . . . . . 8 (((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
4133, 40syl3an1 1271 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
42413expib 1206 . . . . . 6 (𝐴 ∈ ℝ → (((π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2))))))
4331, 42sylbid 150 . . . . 5 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2))))))
4433resincld 11715 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
4544lt0neg2d 8463 . . . . . 6 (𝐴 ∈ ℝ → (0 < (sin‘(𝐴 − (π / 2))) ↔ -(sin‘(𝐴 − (π / 2))) < 0))
4645anbi2d 464 . . . . 5 (𝐴 ∈ ℝ → (((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
4743, 46sylibd 149 . . . 4 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
48 recn 7935 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
49 pncan3 8155 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
5021, 48, 49sylancr 414 . . . . . . . 8 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
5150fveq2d 5515 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
5233recnd 7976 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
53 sinhalfpip 13908 . . . . . . . 8 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
5452, 53syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
5551, 54eqtr3d 2212 . . . . . 6 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
5655breq1d 4010 . . . . 5 (𝐴 ∈ ℝ → ((sin‘𝐴) < 0 ↔ (cos‘(𝐴 − (π / 2))) < 0))
5750fveq2d 5515 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
58 coshalfpip 13910 . . . . . . . 8 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
5952, 58syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6057, 59eqtr3d 2212 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
6160breq1d 4010 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) < 0 ↔ -(sin‘(𝐴 − (π / 2))) < 0))
6256, 61anbi12d 473 . . . 4 (𝐴 ∈ ℝ → (((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
6347, 62sylibrd 169 . . 3 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0)))
64633impib 1201 . 2 ((𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
659, 64sylbi 121 1 (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 978   = wceq 1353  wcel 2148   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807  *cxr 7981   < clt 7982  cmin 8118  -cneg 8119   / cdiv 8618  2c2 8959  3c3 8960  (,)cioo 9875  sincsin 11636  cosccos 11637  πcpi 11639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922  ax-pre-suploc 7923  ax-addf 7924  ax-mulf 7925
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-disj 3978  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-isom 5221  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-of 6077  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-map 6644  df-pm 6645  df-en 6735  df-dom 6736  df-fin 6737  df-sup 6977  df-inf 6978  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-5 8970  df-6 8971  df-7 8972  df-8 8973  df-9 8974  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-xneg 9759  df-xadd 9760  df-ioo 9879  df-ioc 9880  df-ico 9881  df-icc 9882  df-fz 9996  df-fzo 10129  df-seqfrec 10432  df-exp 10506  df-fac 10690  df-bc 10712  df-ihash 10740  df-shft 10808  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-clim 11271  df-sumdc 11346  df-ef 11640  df-sin 11642  df-cos 11643  df-pi 11645  df-rest 12638  df-topgen 12657  df-psmet 13154  df-xmet 13155  df-met 13156  df-bl 13157  df-mopn 13158  df-top 13163  df-topon 13176  df-bases 13208  df-ntr 13263  df-cn 13355  df-cnp 13356  df-tx 13420  df-cncf 13725  df-limced 13792  df-dvap 13793
This theorem is referenced by:  sincosq4sgn  13917
  Copyright terms: Public domain W3C validator