ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sincosq3sgn GIF version

Theorem sincosq3sgn 15502
Description: The signs of the sine and cosine functions in the third quadrant. (Contributed by Paul Chapman, 24-Jan-2008.)
Assertion
Ref Expression
sincosq3sgn (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))

Proof of Theorem sincosq3sgn
StepHypRef Expression
1 pire 15460 . . 3 π ∈ ℝ
2 3re 9184 . . . 4 3 ∈ ℝ
3 halfpire 15466 . . . 4 (π / 2) ∈ ℝ
42, 3remulcli 8160 . . 3 (3 · (π / 2)) ∈ ℝ
5 rexr 8192 . . . 4 (π ∈ ℝ → π ∈ ℝ*)
6 rexr 8192 . . . 4 ((3 · (π / 2)) ∈ ℝ → (3 · (π / 2)) ∈ ℝ*)
7 elioo2 10117 . . . 4 ((π ∈ ℝ* ∧ (3 · (π / 2)) ∈ ℝ*) → (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2)))))
85, 6, 7syl2an 289 . . 3 ((π ∈ ℝ ∧ (3 · (π / 2)) ∈ ℝ) → (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2)))))
91, 4, 8mp2an 426 . 2 (𝐴 ∈ (π(,)(3 · (π / 2))) ↔ (𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2))))
10 pidiv2halves 15469 . . . . . . . . 9 ((π / 2) + (π / 2)) = π
1110breq1i 4090 . . . . . . . 8 (((π / 2) + (π / 2)) < 𝐴 ↔ π < 𝐴)
12 ltaddsub 8583 . . . . . . . . 9 (((π / 2) ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ 𝐴 ∈ ℝ) → (((π / 2) + (π / 2)) < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
133, 3, 12mp3an12 1361 . . . . . . . 8 (𝐴 ∈ ℝ → (((π / 2) + (π / 2)) < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
1411, 13bitr3id 194 . . . . . . 7 (𝐴 ∈ ℝ → (π < 𝐴 ↔ (π / 2) < (𝐴 − (π / 2))))
15 ltsubadd 8579 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − (π / 2)) < π ↔ 𝐴 < (π + (π / 2))))
163, 1, 15mp3an23 1363 . . . . . . . 8 (𝐴 ∈ ℝ → ((𝐴 − (π / 2)) < π ↔ 𝐴 < (π + (π / 2))))
17 df-3 9170 . . . . . . . . . . 11 3 = (2 + 1)
1817oveq1i 6011 . . . . . . . . . 10 (3 · (π / 2)) = ((2 + 1) · (π / 2))
19 2cn 9181 . . . . . . . . . . 11 2 ∈ ℂ
20 ax-1cn 8092 . . . . . . . . . . 11 1 ∈ ℂ
213recni 8158 . . . . . . . . . . 11 (π / 2) ∈ ℂ
2219, 20, 21adddiri 8157 . . . . . . . . . 10 ((2 + 1) · (π / 2)) = ((2 · (π / 2)) + (1 · (π / 2)))
231recni 8158 . . . . . . . . . . . 12 π ∈ ℂ
24 2ap0 9203 . . . . . . . . . . . 12 2 # 0
2523, 19, 24divcanap2i 8902 . . . . . . . . . . 11 (2 · (π / 2)) = π
2621mullidi 8149 . . . . . . . . . . 11 (1 · (π / 2)) = (π / 2)
2725, 26oveq12i 6013 . . . . . . . . . 10 ((2 · (π / 2)) + (1 · (π / 2))) = (π + (π / 2))
2818, 22, 273eqtrri 2255 . . . . . . . . 9 (π + (π / 2)) = (3 · (π / 2))
2928breq2i 4091 . . . . . . . 8 (𝐴 < (π + (π / 2)) ↔ 𝐴 < (3 · (π / 2)))
3016, 29bitr2di 197 . . . . . . 7 (𝐴 ∈ ℝ → (𝐴 < (3 · (π / 2)) ↔ (𝐴 − (π / 2)) < π))
3114, 30anbi12d 473 . . . . . 6 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) ↔ ((π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
32 resubcl 8410 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (π / 2) ∈ ℝ) → (𝐴 − (π / 2)) ∈ ℝ)
333, 32mpan2 425 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℝ)
34 sincosq2sgn 15501 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) → (0 < (sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0))
35 rexr 8192 . . . . . . . . . . 11 ((π / 2) ∈ ℝ → (π / 2) ∈ ℝ*)
36 elioo2 10117 . . . . . . . . . . 11 (((π / 2) ∈ ℝ* ∧ π ∈ ℝ*) → ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
3735, 5, 36syl2an 289 . . . . . . . . . 10 (((π / 2) ∈ ℝ ∧ π ∈ ℝ) → ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π)))
383, 1, 37mp2an 426 . . . . . . . . 9 ((𝐴 − (π / 2)) ∈ ((π / 2)(,)π) ↔ ((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π))
39 ancom 266 . . . . . . . . 9 ((0 < (sin‘(𝐴 − (π / 2))) ∧ (cos‘(𝐴 − (π / 2))) < 0) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
4034, 38, 393imtr3i 200 . . . . . . . 8 (((𝐴 − (π / 2)) ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
4133, 40syl3an1 1304 . . . . . . 7 ((𝐴 ∈ ℝ ∧ (π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))))
42413expib 1230 . . . . . 6 (𝐴 ∈ ℝ → (((π / 2) < (𝐴 − (π / 2)) ∧ (𝐴 − (π / 2)) < π) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2))))))
4331, 42sylbid 150 . . . . 5 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2))))))
4433resincld 12234 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘(𝐴 − (π / 2))) ∈ ℝ)
4544lt0neg2d 8663 . . . . . 6 (𝐴 ∈ ℝ → (0 < (sin‘(𝐴 − (π / 2))) ↔ -(sin‘(𝐴 − (π / 2))) < 0))
4645anbi2d 464 . . . . 5 (𝐴 ∈ ℝ → (((cos‘(𝐴 − (π / 2))) < 0 ∧ 0 < (sin‘(𝐴 − (π / 2)))) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
4743, 46sylibd 149 . . . 4 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
48 recn 8132 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
49 pncan3 8354 . . . . . . . . 9 (((π / 2) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
5021, 48, 49sylancr 414 . . . . . . . 8 (𝐴 ∈ ℝ → ((π / 2) + (𝐴 − (π / 2))) = 𝐴)
5150fveq2d 5631 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (sin‘𝐴))
5233recnd 8175 . . . . . . . 8 (𝐴 ∈ ℝ → (𝐴 − (π / 2)) ∈ ℂ)
53 sinhalfpip 15494 . . . . . . . 8 ((𝐴 − (π / 2)) ∈ ℂ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
5452, 53syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (sin‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘(𝐴 − (π / 2))))
5551, 54eqtr3d 2264 . . . . . 6 (𝐴 ∈ ℝ → (sin‘𝐴) = (cos‘(𝐴 − (π / 2))))
5655breq1d 4093 . . . . 5 (𝐴 ∈ ℝ → ((sin‘𝐴) < 0 ↔ (cos‘(𝐴 − (π / 2))) < 0))
5750fveq2d 5631 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = (cos‘𝐴))
58 coshalfpip 15496 . . . . . . . 8 ((𝐴 − (π / 2)) ∈ ℂ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
5952, 58syl 14 . . . . . . 7 (𝐴 ∈ ℝ → (cos‘((π / 2) + (𝐴 − (π / 2)))) = -(sin‘(𝐴 − (π / 2))))
6057, 59eqtr3d 2264 . . . . . 6 (𝐴 ∈ ℝ → (cos‘𝐴) = -(sin‘(𝐴 − (π / 2))))
6160breq1d 4093 . . . . 5 (𝐴 ∈ ℝ → ((cos‘𝐴) < 0 ↔ -(sin‘(𝐴 − (π / 2))) < 0))
6256, 61anbi12d 473 . . . 4 (𝐴 ∈ ℝ → (((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0) ↔ ((cos‘(𝐴 − (π / 2))) < 0 ∧ -(sin‘(𝐴 − (π / 2))) < 0)))
6347, 62sylibrd 169 . . 3 (𝐴 ∈ ℝ → ((π < 𝐴𝐴 < (3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0)))
64633impib 1225 . 2 ((𝐴 ∈ ℝ ∧ π < 𝐴𝐴 < (3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
659, 64sylbi 121 1 (𝐴 ∈ (π(,)(3 · (π / 2))) → ((sin‘𝐴) < 0 ∧ (cos‘𝐴) < 0))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6001  cc 7997  cr 7998  0cc0 7999  1c1 8000   + caddc 8002   · cmul 8004  *cxr 8180   < clt 8181  cmin 8317  -cneg 8318   / cdiv 8819  2c2 9161  3c3 9162  (,)cioo 10084  sincsin 12155  cosccos 12156  πcpi 12158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119  ax-pre-suploc 8120  ax-addf 8121  ax-mulf 8122
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-disj 4060  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-of 6218  df-1st 6286  df-2nd 6287  df-recs 6451  df-irdg 6516  df-frec 6537  df-1o 6562  df-oadd 6566  df-er 6680  df-map 6797  df-pm 6798  df-en 6888  df-dom 6889  df-fin 6890  df-sup 7151  df-inf 7152  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-5 9172  df-6 9173  df-7 9174  df-8 9175  df-9 9176  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-xneg 9968  df-xadd 9969  df-ioo 10088  df-ioc 10089  df-ico 10090  df-icc 10091  df-fz 10205  df-fzo 10339  df-seqfrec 10670  df-exp 10761  df-fac 10948  df-bc 10970  df-ihash 10998  df-shft 11326  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-clim 11790  df-sumdc 11865  df-ef 12159  df-sin 12161  df-cos 12162  df-pi 12164  df-rest 13274  df-topgen 13293  df-psmet 14507  df-xmet 14508  df-met 14509  df-bl 14510  df-mopn 14511  df-top 14672  df-topon 14685  df-bases 14717  df-ntr 14770  df-cn 14862  df-cnp 14863  df-tx 14927  df-cncf 15245  df-limced 15330  df-dvap 15331
This theorem is referenced by:  sincosq4sgn  15503
  Copyright terms: Public domain W3C validator