ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfiv01gt1 GIF version

Theorem hashfiv01gt1 11004
Description: The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashfiv01gt1 (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))

Proof of Theorem hashfiv01gt1
StepHypRef Expression
1 simpr 110 . . 3 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → (♯‘𝑀) < 0)
2 hashcl 11003 . . . . 5 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℕ0)
3 nn0nlt0 9395 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → ¬ (♯‘𝑀) < 0)
42, 3syl 14 . . . 4 (𝑀 ∈ Fin → ¬ (♯‘𝑀) < 0)
54adantr 276 . . 3 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ¬ (♯‘𝑀) < 0)
61, 5pm2.21dd 623 . 2 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
7 orc 717 . . . 4 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) → (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀)))
8 fz01or 10307 . . . 4 ((♯‘𝑀) ∈ (0...1) ↔ ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1))
9 df-3or 1003 . . . 4 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀)))
107, 8, 93imtr4i 201 . . 3 ((♯‘𝑀) ∈ (0...1) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1110adantl 277 . 2 ((𝑀 ∈ Fin ∧ (♯‘𝑀) ∈ (0...1)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
12 3mix3 1192 . . 3 (1 < (♯‘𝑀) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1312adantl 277 . 2 ((𝑀 ∈ Fin ∧ 1 < (♯‘𝑀)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
142nn0zd 9567 . . 3 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℤ)
15 0zd 9458 . . 3 (𝑀 ∈ Fin → 0 ∈ ℤ)
16 1zzd 9473 . . 3 (𝑀 ∈ Fin → 1 ∈ ℤ)
17 fztri3or 10235 . . 3 (((♯‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ 1 ∈ ℤ) → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀)))
1814, 15, 16, 17syl3anc 1271 . 2 (𝑀 ∈ Fin → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀)))
196, 11, 13, 18mpjao3dan 1341 1 (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 713  w3o 1001   = wceq 1395  wcel 2200   class class class wbr 4083  cfv 5318  (class class class)co 6001  Fincfn 6887  0cc0 7999  1c1 8000   < clt 8181  0cn0 9369  cz 9446  ...cfz 10204  chash 10997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-recs 6451  df-frec 6537  df-er 6680  df-en 6888  df-dom 6889  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205  df-ihash 10998
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator