![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > hashfiv01gt1 | GIF version |
Description: The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.) |
Ref | Expression |
---|---|
hashfiv01gt1 | ⊢ (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 110 | . . 3 ⊢ ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → (♯‘𝑀) < 0) | |
2 | hashcl 10761 | . . . . 5 ⊢ (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℕ0) | |
3 | nn0nlt0 9202 | . . . . 5 ⊢ ((♯‘𝑀) ∈ ℕ0 → ¬ (♯‘𝑀) < 0) | |
4 | 2, 3 | syl 14 | . . . 4 ⊢ (𝑀 ∈ Fin → ¬ (♯‘𝑀) < 0) |
5 | 4 | adantr 276 | . . 3 ⊢ ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ¬ (♯‘𝑀) < 0) |
6 | 1, 5 | pm2.21dd 620 | . 2 ⊢ ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
7 | orc 712 | . . . 4 ⊢ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) → (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀))) | |
8 | fz01or 10111 | . . . 4 ⊢ ((♯‘𝑀) ∈ (0...1) ↔ ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1)) | |
9 | df-3or 979 | . . . 4 ⊢ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀))) | |
10 | 7, 8, 9 | 3imtr4i 201 | . . 3 ⊢ ((♯‘𝑀) ∈ (0...1) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
11 | 10 | adantl 277 | . 2 ⊢ ((𝑀 ∈ Fin ∧ (♯‘𝑀) ∈ (0...1)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
12 | 3mix3 1168 | . . 3 ⊢ (1 < (♯‘𝑀) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) | |
13 | 12 | adantl 277 | . 2 ⊢ ((𝑀 ∈ Fin ∧ 1 < (♯‘𝑀)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
14 | 2 | nn0zd 9373 | . . 3 ⊢ (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℤ) |
15 | 0zd 9265 | . . 3 ⊢ (𝑀 ∈ Fin → 0 ∈ ℤ) | |
16 | 1zzd 9280 | . . 3 ⊢ (𝑀 ∈ Fin → 1 ∈ ℤ) | |
17 | fztri3or 10039 | . . 3 ⊢ (((♯‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ 1 ∈ ℤ) → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀))) | |
18 | 14, 15, 16, 17 | syl3anc 1238 | . 2 ⊢ (𝑀 ∈ Fin → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀))) |
19 | 6, 11, 13, 18 | mpjao3dan 1307 | 1 ⊢ (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀))) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ∨ wo 708 ∨ w3o 977 = wceq 1353 ∈ wcel 2148 class class class wbr 4004 ‘cfv 5217 (class class class)co 5875 Fincfn 6740 0cc0 7811 1c1 7812 < clt 7992 ℕ0cn0 9176 ℤcz 9253 ...cfz 10008 ♯chash 10755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4119 ax-sep 4122 ax-nul 4130 ax-pow 4175 ax-pr 4210 ax-un 4434 ax-setind 4537 ax-iinf 4588 ax-cnex 7902 ax-resscn 7903 ax-1cn 7904 ax-1re 7905 ax-icn 7906 ax-addcl 7907 ax-addrcl 7908 ax-mulcl 7909 ax-addcom 7911 ax-addass 7913 ax-distr 7915 ax-i2m1 7916 ax-0lt1 7917 ax-0id 7919 ax-rnegex 7920 ax-cnre 7922 ax-pre-ltirr 7923 ax-pre-ltwlin 7924 ax-pre-lttrn 7925 ax-pre-apti 7926 ax-pre-ltadd 7927 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2740 df-sbc 2964 df-csb 3059 df-dif 3132 df-un 3134 df-in 3136 df-ss 3143 df-nul 3424 df-pw 3578 df-sn 3599 df-pr 3600 df-op 3602 df-uni 3811 df-int 3846 df-iun 3889 df-br 4005 df-opab 4066 df-mpt 4067 df-tr 4103 df-id 4294 df-iord 4367 df-on 4369 df-ilim 4370 df-suc 4372 df-iom 4591 df-xp 4633 df-rel 4634 df-cnv 4635 df-co 4636 df-dm 4637 df-rn 4638 df-res 4639 df-ima 4640 df-iota 5179 df-fun 5219 df-fn 5220 df-f 5221 df-f1 5222 df-fo 5223 df-f1o 5224 df-fv 5225 df-riota 5831 df-ov 5878 df-oprab 5879 df-mpo 5880 df-recs 6306 df-frec 6392 df-er 6535 df-en 6741 df-dom 6742 df-fin 6743 df-pnf 7994 df-mnf 7995 df-xr 7996 df-ltxr 7997 df-le 7998 df-sub 8130 df-neg 8131 df-inn 8920 df-n0 9177 df-z 9254 df-uz 9529 df-fz 10009 df-ihash 10756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |