ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfiv01gt1 GIF version

Theorem hashfiv01gt1 10305
Description: The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashfiv01gt1 (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))

Proof of Theorem hashfiv01gt1
StepHypRef Expression
1 simpr 109 . . 3 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → (♯‘𝑀) < 0)
2 hashcl 10304 . . . . 5 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℕ0)
3 nn0nlt0 8797 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → ¬ (♯‘𝑀) < 0)
42, 3syl 14 . . . 4 (𝑀 ∈ Fin → ¬ (♯‘𝑀) < 0)
54adantr 271 . . 3 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ¬ (♯‘𝑀) < 0)
61, 5pm2.21dd 588 . 2 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
7 orc 671 . . . 4 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) → (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀)))
8 fz01or 9674 . . . 4 ((♯‘𝑀) ∈ (0...1) ↔ ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1))
9 df-3or 928 . . . 4 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀)))
107, 8, 93imtr4i 200 . . 3 ((♯‘𝑀) ∈ (0...1) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1110adantl 272 . 2 ((𝑀 ∈ Fin ∧ (♯‘𝑀) ∈ (0...1)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
12 3mix3 1117 . . 3 (1 < (♯‘𝑀) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1312adantl 272 . 2 ((𝑀 ∈ Fin ∧ 1 < (♯‘𝑀)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
142nn0zd 8965 . . 3 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℤ)
15 0zd 8860 . . 3 (𝑀 ∈ Fin → 0 ∈ ℤ)
16 1zzd 8875 . . 3 (𝑀 ∈ Fin → 1 ∈ ℤ)
17 fztri3or 9602 . . 3 (((♯‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ 1 ∈ ℤ) → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀)))
1814, 15, 16, 17syl3anc 1181 . 2 (𝑀 ∈ Fin → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀)))
196, 11, 13, 18mpjao3dan 1250 1 (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 667  w3o 926   = wceq 1296  wcel 1445   class class class wbr 3867  cfv 5049  (class class class)co 5690  Fincfn 6537  0cc0 7447  1c1 7448   < clt 7619  0cn0 8771  cz 8848  ...cfz 9573  chash 10298
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431  ax-cnex 7533  ax-resscn 7534  ax-1cn 7535  ax-1re 7536  ax-icn 7537  ax-addcl 7538  ax-addrcl 7539  ax-mulcl 7540  ax-addcom 7542  ax-addass 7544  ax-distr 7546  ax-i2m1 7547  ax-0lt1 7548  ax-0id 7550  ax-rnegex 7551  ax-cnre 7553  ax-pre-ltirr 7554  ax-pre-ltwlin 7555  ax-pre-lttrn 7556  ax-pre-apti 7557  ax-pre-ltadd 7558
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-nel 2358  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-id 4144  df-iord 4217  df-on 4219  df-ilim 4220  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-riota 5646  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-recs 6108  df-frec 6194  df-er 6332  df-en 6538  df-dom 6539  df-fin 6540  df-pnf 7621  df-mnf 7622  df-xr 7623  df-ltxr 7624  df-le 7625  df-sub 7752  df-neg 7753  df-inn 8521  df-n0 8772  df-z 8849  df-uz 9119  df-fz 9574  df-ihash 10299
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator