ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfiv01gt1 GIF version

Theorem hashfiv01gt1 10540
Description: The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashfiv01gt1 (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))

Proof of Theorem hashfiv01gt1
StepHypRef Expression
1 simpr 109 . . 3 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → (♯‘𝑀) < 0)
2 hashcl 10539 . . . . 5 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℕ0)
3 nn0nlt0 9015 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → ¬ (♯‘𝑀) < 0)
42, 3syl 14 . . . 4 (𝑀 ∈ Fin → ¬ (♯‘𝑀) < 0)
54adantr 274 . . 3 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ¬ (♯‘𝑀) < 0)
61, 5pm2.21dd 609 . 2 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
7 orc 701 . . . 4 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) → (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀)))
8 fz01or 9903 . . . 4 ((♯‘𝑀) ∈ (0...1) ↔ ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1))
9 df-3or 963 . . . 4 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀)))
107, 8, 93imtr4i 200 . . 3 ((♯‘𝑀) ∈ (0...1) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1110adantl 275 . 2 ((𝑀 ∈ Fin ∧ (♯‘𝑀) ∈ (0...1)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
12 3mix3 1152 . . 3 (1 < (♯‘𝑀) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1312adantl 275 . 2 ((𝑀 ∈ Fin ∧ 1 < (♯‘𝑀)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
142nn0zd 9183 . . 3 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℤ)
15 0zd 9078 . . 3 (𝑀 ∈ Fin → 0 ∈ ℤ)
16 1zzd 9093 . . 3 (𝑀 ∈ Fin → 1 ∈ ℤ)
17 fztri3or 9831 . . 3 (((♯‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ 1 ∈ ℤ) → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀)))
1814, 15, 16, 17syl3anc 1216 . 2 (𝑀 ∈ Fin → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀)))
196, 11, 13, 18mpjao3dan 1285 1 (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wo 697  w3o 961   = wceq 1331  wcel 1480   class class class wbr 3929  cfv 5123  (class class class)co 5774  Fincfn 6634  0cc0 7632  1c1 7633   < clt 7812  0cn0 8989  cz 9066  ...cfz 9802  chash 10533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-addcom 7732  ax-addass 7734  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-0id 7740  ax-rnegex 7741  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-recs 6202  df-frec 6288  df-er 6429  df-en 6635  df-dom 6636  df-fin 6637  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-inn 8733  df-n0 8990  df-z 9067  df-uz 9339  df-fz 9803  df-ihash 10534
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator