ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashfiv01gt1 GIF version

Theorem hashfiv01gt1 10929
Description: The size of a finite set is either 0 or 1 or greater than 1. (Contributed by Jim Kingdon, 21-Feb-2022.)
Assertion
Ref Expression
hashfiv01gt1 (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))

Proof of Theorem hashfiv01gt1
StepHypRef Expression
1 simpr 110 . . 3 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → (♯‘𝑀) < 0)
2 hashcl 10928 . . . . 5 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℕ0)
3 nn0nlt0 9323 . . . . 5 ((♯‘𝑀) ∈ ℕ0 → ¬ (♯‘𝑀) < 0)
42, 3syl 14 . . . 4 (𝑀 ∈ Fin → ¬ (♯‘𝑀) < 0)
54adantr 276 . . 3 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ¬ (♯‘𝑀) < 0)
61, 5pm2.21dd 621 . 2 ((𝑀 ∈ Fin ∧ (♯‘𝑀) < 0) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
7 orc 714 . . . 4 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) → (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀)))
8 fz01or 10235 . . . 4 ((♯‘𝑀) ∈ (0...1) ↔ ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1))
9 df-3or 982 . . . 4 (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)) ↔ (((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1) ∨ 1 < (♯‘𝑀)))
107, 8, 93imtr4i 201 . . 3 ((♯‘𝑀) ∈ (0...1) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1110adantl 277 . 2 ((𝑀 ∈ Fin ∧ (♯‘𝑀) ∈ (0...1)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
12 3mix3 1171 . . 3 (1 < (♯‘𝑀) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
1312adantl 277 . 2 ((𝑀 ∈ Fin ∧ 1 < (♯‘𝑀)) → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
142nn0zd 9495 . . 3 (𝑀 ∈ Fin → (♯‘𝑀) ∈ ℤ)
15 0zd 9386 . . 3 (𝑀 ∈ Fin → 0 ∈ ℤ)
16 1zzd 9401 . . 3 (𝑀 ∈ Fin → 1 ∈ ℤ)
17 fztri3or 10163 . . 3 (((♯‘𝑀) ∈ ℤ ∧ 0 ∈ ℤ ∧ 1 ∈ ℤ) → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀)))
1814, 15, 16, 17syl3anc 1250 . 2 (𝑀 ∈ Fin → ((♯‘𝑀) < 0 ∨ (♯‘𝑀) ∈ (0...1) ∨ 1 < (♯‘𝑀)))
196, 11, 13, 18mpjao3dan 1320 1 (𝑀 ∈ Fin → ((♯‘𝑀) = 0 ∨ (♯‘𝑀) = 1 ∨ 1 < (♯‘𝑀)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wo 710  w3o 980   = wceq 1373  wcel 2176   class class class wbr 4045  cfv 5272  (class class class)co 5946  Fincfn 6829  0cc0 7927  1c1 7928   < clt 8109  0cn0 9297  cz 9374  ...cfz 10132  chash 10922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-recs 6393  df-frec 6479  df-er 6622  df-en 6830  df-dom 6831  df-fin 6832  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-ihash 10923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator