ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnxr GIF version

Theorem qbtwnxr 10231
Description: The rational numbers are dense in *: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
qbtwnxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnxr
StepHypRef Expression
1 elxr 9750 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 9750 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 qbtwnre 10230 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
433expia 1205 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
6 peano2re 8070 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
76adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 + 1) ∈ ℝ)
8 ltp1 8777 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
98adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < (𝐴 + 1))
10 qbtwnre 10230 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ 𝐴 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
115, 7, 9, 10syl3anc 1238 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
12 qre 9601 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
13 ltpnf 9754 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 < +∞)
1412, 13syl 14 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 < +∞)
1514adantl 277 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < +∞)
16 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝐵 = +∞)
1715, 16breqtrrd 4028 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < 𝐵)
1817a1d 22 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → (𝑥 < (𝐴 + 1) → 𝑥 < 𝐵))
1918anim2d 337 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥𝑥 < (𝐴 + 1)) → (𝐴 < 𝑥𝑥 < 𝐵)))
2019reximdva 2579 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2111, 20mpd 13 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
2221a1d 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
23 rexr 7980 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
24 breq2 4004 . . . . . . . . 9 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2524adantl 277 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
26 nltmnf 9762 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2726adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 = -∞) → ¬ 𝐴 < -∞)
2827pm2.21d 619 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < -∞ → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2925, 28sylbid 150 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3023, 29sylan 283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
314, 22, 303jaodan 1306 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
322, 31sylan2b 287 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
33 breq1 4003 . . . . . 6 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
3433adantr 276 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
35 pnfnlt 9761 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3635adantl 277 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3736pm2.21d 619 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3834, 37sylbid 150 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
39 peano2rem 8201 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
4039adantl 277 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) ∈ ℝ)
41 simpr 110 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
42 ltm1 8779 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) < 𝐵)
4342adantl 277 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) < 𝐵)
44 qbtwnre 10230 . . . . . . . . 9 (((𝐵 − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 − 1) < 𝐵) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
4540, 41, 43, 44syl3anc 1238 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
46 simpll 527 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 = -∞)
4712adantl 277 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝑥 ∈ ℝ)
48 mnflt 9757 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → -∞ < 𝑥)
4947, 48syl 14 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → -∞ < 𝑥)
5046, 49eqbrtrd 4022 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 < 𝑥)
5150a1d 22 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → ((𝐵 − 1) < 𝑥𝐴 < 𝑥))
5251anim1d 336 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → (((𝐵 − 1) < 𝑥𝑥 < 𝐵) → (𝐴 < 𝑥𝑥 < 𝐵)))
5352reximdva 2579 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5445, 53mpd 13 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
5554a1d 22 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
56 1re 7934 . . . . . . . . . 10 1 ∈ ℝ
57 mnflt 9757 . . . . . . . . . 10 (1 ∈ ℝ → -∞ < 1)
5856, 57ax-mp 5 . . . . . . . . 9 -∞ < 1
59 breq1 4003 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 1 ↔ -∞ < 1))
6058, 59mpbiri 168 . . . . . . . 8 (𝐴 = -∞ → 𝐴 < 1)
61 ltpnf 9754 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
6256, 61ax-mp 5 . . . . . . . . 9 1 < +∞
63 breq2 4004 . . . . . . . . 9 (𝐵 = +∞ → (1 < 𝐵 ↔ 1 < +∞))
6462, 63mpbiri 168 . . . . . . . 8 (𝐵 = +∞ → 1 < 𝐵)
65 1z 9255 . . . . . . . . . 10 1 ∈ ℤ
66 zq 9602 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
6765, 66ax-mp 5 . . . . . . . . 9 1 ∈ ℚ
68 breq2 4004 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 < 𝑥𝐴 < 1))
69 breq1 4003 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 < 𝐵 ↔ 1 < 𝐵))
7068, 69anbi12d 473 . . . . . . . . . 10 (𝑥 = 1 → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < 1 ∧ 1 < 𝐵)))
7170rspcev 2841 . . . . . . . . 9 ((1 ∈ ℚ ∧ (𝐴 < 1 ∧ 1 < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7267, 71mpan 424 . . . . . . . 8 ((𝐴 < 1 ∧ 1 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7360, 64, 72syl2an 289 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7473a1d 22 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
75 3mix3 1168 . . . . . . . 8 (𝐴 = -∞ → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7675, 1sylibr 134 . . . . . . 7 (𝐴 = -∞ → 𝐴 ∈ ℝ*)
7776, 29sylan 283 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7855, 74, 773jaodan 1306 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
792, 78sylan2b 287 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
8032, 38, 793jaoian 1305 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
811, 80sylanb 284 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
82813impia 1200 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 977  w3a 978   = wceq 1353  wcel 2148  wrex 2456   class class class wbr 4000  (class class class)co 5868  cr 7788  1c1 7790   + caddc 7792  +∞cpnf 7966  -∞cmnf 7967  *cxr 7968   < clt 7969  cmin 8105  cz 9229  cq 9595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-mulrcl 7888  ax-addcom 7889  ax-mulcom 7890  ax-addass 7891  ax-mulass 7892  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-1rid 7896  ax-0id 7897  ax-rnegex 7898  ax-precex 7899  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-apti 7904  ax-pre-ltadd 7905  ax-pre-mulgt0 7906  ax-pre-mulext 7907  ax-arch 7908
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-id 4289  df-po 4292  df-iso 4293  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-reap 8509  df-ap 8516  df-div 8606  df-inn 8896  df-2 8954  df-n0 9153  df-z 9230  df-uz 9505  df-q 9596  df-rp 9628
This theorem is referenced by:  ioo0  10233  ioom  10234  ico0  10235  ioc0  10236  blssps  13560  blss  13561  tgqioo  13680
  Copyright terms: Public domain W3C validator