Proof of Theorem qbtwnxr
| Step | Hyp | Ref
 | Expression | 
| 1 |   | elxr 9851 | 
. . 3
⊢ (𝐴 ∈ ℝ*
↔ (𝐴 ∈ ℝ
∨ 𝐴 = +∞ ∨
𝐴 =
-∞)) | 
| 2 |   | elxr 9851 | 
. . . . 5
⊢ (𝐵 ∈ ℝ*
↔ (𝐵 ∈ ℝ
∨ 𝐵 = +∞ ∨
𝐵 =
-∞)) | 
| 3 |   | qbtwnre 10346 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 4 | 3 | 3expia 1207 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 5 |   | simpl 109 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 ∈
ℝ) | 
| 6 |   | peano2re 8162 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈
ℝ) | 
| 7 | 6 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 + 1) ∈
ℝ) | 
| 8 |   | ltp1 8871 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1)) | 
| 9 | 8 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < (𝐴 + 1)) | 
| 10 |   | qbtwnre 10346 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ 𝐴 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < (𝐴 + 1))) | 
| 11 | 5, 7, 9, 10 | syl3anc 1249 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < (𝐴 + 1))) | 
| 12 |   | qre 9699 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℚ → 𝑥 ∈
ℝ) | 
| 13 |   | ltpnf 9855 | 
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℝ → 𝑥 < +∞) | 
| 14 | 12, 13 | syl 14 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℚ → 𝑥 < +∞) | 
| 15 | 14 | adantl 277 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < +∞) | 
| 16 |   | simplr 528 | 
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝐵 = +∞) | 
| 17 | 15, 16 | breqtrrd 4061 | 
. . . . . . . . . . 11
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < 𝐵) | 
| 18 | 17 | a1d 22 | 
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → (𝑥 < (𝐴 + 1) → 𝑥 < 𝐵)) | 
| 19 | 18 | anim2d 337 | 
. . . . . . . . 9
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥 ∧ 𝑥 < (𝐴 + 1)) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 20 | 19 | reximdva 2599 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) →
(∃𝑥 ∈ ℚ
(𝐴 < 𝑥 ∧ 𝑥 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 21 | 11, 20 | mpd 13 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 22 | 21 | a1d 22 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 23 |   | rexr 8072 | 
. . . . . . 7
⊢ (𝐴 ∈ ℝ → 𝐴 ∈
ℝ*) | 
| 24 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝐵 = -∞ → (𝐴 < 𝐵 ↔ 𝐴 < -∞)) | 
| 25 | 24 | adantl 277 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐴 < 𝐵 ↔ 𝐴 < -∞)) | 
| 26 |   | nltmnf 9863 | 
. . . . . . . . . 10
⊢ (𝐴 ∈ ℝ*
→ ¬ 𝐴 <
-∞) | 
| 27 | 26 | adantr 276 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
¬ 𝐴 <
-∞) | 
| 28 | 27 | pm2.21d 620 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐴 < -∞ →
∃𝑥 ∈ ℚ
(𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 29 | 25, 28 | sylbid 150 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 = -∞) →
(𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 30 | 23, 29 | sylan 283 | 
. . . . . 6
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 31 | 4, 22, 30 | 3jaodan 1317 | 
. . . . 5
⊢ ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 32 | 2, 31 | sylan2b 287 | 
. . . 4
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 33 |   | breq1 4036 | 
. . . . . 6
⊢ (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵)) | 
| 34 | 33 | adantr 276 | 
. . . . 5
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 ↔ +∞ < 𝐵)) | 
| 35 |   | pnfnlt 9862 | 
. . . . . . 7
⊢ (𝐵 ∈ ℝ*
→ ¬ +∞ < 𝐵) | 
| 36 | 35 | adantl 277 | 
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ ¬ +∞ < 𝐵) | 
| 37 | 36 | pm2.21d 620 | 
. . . . 5
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (+∞ < 𝐵
→ ∃𝑥 ∈
ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 38 | 34, 37 | sylbid 150 | 
. . . 4
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 39 |   | peano2rem 8293 | 
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → (𝐵 − 1) ∈
ℝ) | 
| 40 | 39 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) ∈
ℝ) | 
| 41 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈
ℝ) | 
| 42 |   | ltm1 8873 | 
. . . . . . . . . 10
⊢ (𝐵 ∈ ℝ → (𝐵 − 1) < 𝐵) | 
| 43 | 42 | adantl 277 | 
. . . . . . . . 9
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) < 𝐵) | 
| 44 |   | qbtwnre 10346 | 
. . . . . . . . 9
⊢ (((𝐵 − 1) ∈ ℝ ∧
𝐵 ∈ ℝ ∧
(𝐵 − 1) < 𝐵) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 45 | 40, 41, 43, 44 | syl3anc 1249 | 
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) →
∃𝑥 ∈ ℚ
((𝐵 − 1) < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 46 |   | simpll 527 | 
. . . . . . . . . . . 12
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 = -∞) | 
| 47 | 12 | adantl 277 | 
. . . . . . . . . . . . 13
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝑥 ∈
ℝ) | 
| 48 |   | mnflt 9858 | 
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ℝ → -∞
< 𝑥) | 
| 49 | 47, 48 | syl 14 | 
. . . . . . . . . . . 12
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → -∞
< 𝑥) | 
| 50 | 46, 49 | eqbrtrd 4055 | 
. . . . . . . . . . 11
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 < 𝑥) | 
| 51 | 50 | a1d 22 | 
. . . . . . . . . 10
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → ((𝐵 − 1) < 𝑥 → 𝐴 < 𝑥)) | 
| 52 | 51 | anim1d 336 | 
. . . . . . . . 9
⊢ (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → (((𝐵 − 1) < 𝑥 ∧ 𝑥 < 𝐵) → (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 53 | 52 | reximdva 2599 | 
. . . . . . . 8
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) →
(∃𝑥 ∈ ℚ
((𝐵 − 1) < 𝑥 ∧ 𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 54 | 45, 53 | mpd 13 | 
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) →
∃𝑥 ∈ ℚ
(𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 55 | 54 | a1d 22 | 
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 56 |   | 1re 8025 | 
. . . . . . . . . 10
⊢ 1 ∈
ℝ | 
| 57 |   | mnflt 9858 | 
. . . . . . . . . 10
⊢ (1 ∈
ℝ → -∞ < 1) | 
| 58 | 56, 57 | ax-mp 5 | 
. . . . . . . . 9
⊢ -∞
< 1 | 
| 59 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝐴 = -∞ → (𝐴 < 1 ↔ -∞ <
1)) | 
| 60 | 58, 59 | mpbiri 168 | 
. . . . . . . 8
⊢ (𝐴 = -∞ → 𝐴 < 1) | 
| 61 |   | ltpnf 9855 | 
. . . . . . . . . 10
⊢ (1 ∈
ℝ → 1 < +∞) | 
| 62 | 56, 61 | ax-mp 5 | 
. . . . . . . . 9
⊢ 1 <
+∞ | 
| 63 |   | breq2 4037 | 
. . . . . . . . 9
⊢ (𝐵 = +∞ → (1 < 𝐵 ↔ 1 <
+∞)) | 
| 64 | 62, 63 | mpbiri 168 | 
. . . . . . . 8
⊢ (𝐵 = +∞ → 1 < 𝐵) | 
| 65 |   | 1z 9352 | 
. . . . . . . . . 10
⊢ 1 ∈
ℤ | 
| 66 |   | zq 9700 | 
. . . . . . . . . 10
⊢ (1 ∈
ℤ → 1 ∈ ℚ) | 
| 67 | 65, 66 | ax-mp 5 | 
. . . . . . . . 9
⊢ 1 ∈
ℚ | 
| 68 |   | breq2 4037 | 
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝐴 < 𝑥 ↔ 𝐴 < 1)) | 
| 69 |   | breq1 4036 | 
. . . . . . . . . . 11
⊢ (𝑥 = 1 → (𝑥 < 𝐵 ↔ 1 < 𝐵)) | 
| 70 | 68, 69 | anbi12d 473 | 
. . . . . . . . . 10
⊢ (𝑥 = 1 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 1 ∧ 1 < 𝐵))) | 
| 71 | 70 | rspcev 2868 | 
. . . . . . . . 9
⊢ ((1
∈ ℚ ∧ (𝐴
< 1 ∧ 1 < 𝐵))
→ ∃𝑥 ∈
ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 72 | 67, 71 | mpan 424 | 
. . . . . . . 8
⊢ ((𝐴 < 1 ∧ 1 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 73 | 60, 64, 72 | syl2an 289 | 
. . . . . . 7
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) | 
| 74 | 73 | a1d 22 | 
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 75 |   | 3mix3 1170 | 
. . . . . . . 8
⊢ (𝐴 = -∞ → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞)) | 
| 76 | 75, 1 | sylibr 134 | 
. . . . . . 7
⊢ (𝐴 = -∞ → 𝐴 ∈
ℝ*) | 
| 77 | 76, 29 | sylan 283 | 
. . . . . 6
⊢ ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 78 | 55, 74, 77 | 3jaodan 1317 | 
. . . . 5
⊢ ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 79 | 2, 78 | sylan2b 287 | 
. . . 4
⊢ ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 80 | 32, 38, 79 | 3jaoian 1316 | 
. . 3
⊢ (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*)
→ (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 81 | 1, 80 | sylanb 284 | 
. 2
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵))) | 
| 82 | 81 | 3impia 1202 | 
1
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝐴
< 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)) |