ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnxr GIF version

Theorem qbtwnxr 10413
Description: The rational numbers are dense in *: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
qbtwnxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnxr
StepHypRef Expression
1 elxr 9911 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 9911 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 qbtwnre 10412 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
433expia 1208 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5 simpl 109 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
6 peano2re 8221 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
76adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 + 1) ∈ ℝ)
8 ltp1 8930 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
98adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < (𝐴 + 1))
10 qbtwnre 10412 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ 𝐴 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
115, 7, 9, 10syl3anc 1250 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
12 qre 9759 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
13 ltpnf 9915 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 < +∞)
1412, 13syl 14 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 < +∞)
1514adantl 277 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < +∞)
16 simplr 528 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝐵 = +∞)
1715, 16breqtrrd 4076 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < 𝐵)
1817a1d 22 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → (𝑥 < (𝐴 + 1) → 𝑥 < 𝐵))
1918anim2d 337 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥𝑥 < (𝐴 + 1)) → (𝐴 < 𝑥𝑥 < 𝐵)))
2019reximdva 2609 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2111, 20mpd 13 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
2221a1d 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
23 rexr 8131 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
24 breq2 4052 . . . . . . . . 9 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2524adantl 277 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
26 nltmnf 9923 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2726adantr 276 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 = -∞) → ¬ 𝐴 < -∞)
2827pm2.21d 620 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < -∞ → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2925, 28sylbid 150 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3023, 29sylan 283 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
314, 22, 303jaodan 1319 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
322, 31sylan2b 287 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
33 breq1 4051 . . . . . 6 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
3433adantr 276 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
35 pnfnlt 9922 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3635adantl 277 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3736pm2.21d 620 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3834, 37sylbid 150 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
39 peano2rem 8352 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
4039adantl 277 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) ∈ ℝ)
41 simpr 110 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
42 ltm1 8932 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) < 𝐵)
4342adantl 277 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) < 𝐵)
44 qbtwnre 10412 . . . . . . . . 9 (((𝐵 − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 − 1) < 𝐵) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
4540, 41, 43, 44syl3anc 1250 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
46 simpll 527 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 = -∞)
4712adantl 277 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝑥 ∈ ℝ)
48 mnflt 9918 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → -∞ < 𝑥)
4947, 48syl 14 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → -∞ < 𝑥)
5046, 49eqbrtrd 4070 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 < 𝑥)
5150a1d 22 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → ((𝐵 − 1) < 𝑥𝐴 < 𝑥))
5251anim1d 336 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → (((𝐵 − 1) < 𝑥𝑥 < 𝐵) → (𝐴 < 𝑥𝑥 < 𝐵)))
5352reximdva 2609 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5445, 53mpd 13 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
5554a1d 22 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
56 1re 8084 . . . . . . . . . 10 1 ∈ ℝ
57 mnflt 9918 . . . . . . . . . 10 (1 ∈ ℝ → -∞ < 1)
5856, 57ax-mp 5 . . . . . . . . 9 -∞ < 1
59 breq1 4051 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 1 ↔ -∞ < 1))
6058, 59mpbiri 168 . . . . . . . 8 (𝐴 = -∞ → 𝐴 < 1)
61 ltpnf 9915 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
6256, 61ax-mp 5 . . . . . . . . 9 1 < +∞
63 breq2 4052 . . . . . . . . 9 (𝐵 = +∞ → (1 < 𝐵 ↔ 1 < +∞))
6462, 63mpbiri 168 . . . . . . . 8 (𝐵 = +∞ → 1 < 𝐵)
65 1z 9411 . . . . . . . . . 10 1 ∈ ℤ
66 zq 9760 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
6765, 66ax-mp 5 . . . . . . . . 9 1 ∈ ℚ
68 breq2 4052 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 < 𝑥𝐴 < 1))
69 breq1 4051 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 < 𝐵 ↔ 1 < 𝐵))
7068, 69anbi12d 473 . . . . . . . . . 10 (𝑥 = 1 → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < 1 ∧ 1 < 𝐵)))
7170rspcev 2879 . . . . . . . . 9 ((1 ∈ ℚ ∧ (𝐴 < 1 ∧ 1 < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7267, 71mpan 424 . . . . . . . 8 ((𝐴 < 1 ∧ 1 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7360, 64, 72syl2an 289 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7473a1d 22 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
75 3mix3 1171 . . . . . . . 8 (𝐴 = -∞ → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7675, 1sylibr 134 . . . . . . 7 (𝐴 = -∞ → 𝐴 ∈ ℝ*)
7776, 29sylan 283 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7855, 74, 773jaodan 1319 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
792, 78sylan2b 287 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
8032, 38, 793jaoian 1318 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
811, 80sylanb 284 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
82813impia 1203 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  w3o 980  w3a 981   = wceq 1373  wcel 2177  wrex 2486   class class class wbr 4048  (class class class)co 5954  cr 7937  1c1 7939   + caddc 7941  +∞cpnf 8117  -∞cmnf 8118  *cxr 8119   < clt 8120  cmin 8256  cz 9385  cq 9753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-mulrcl 8037  ax-addcom 8038  ax-mulcom 8039  ax-addass 8040  ax-mulass 8041  ax-distr 8042  ax-i2m1 8043  ax-0lt1 8044  ax-1rid 8045  ax-0id 8046  ax-rnegex 8047  ax-precex 8048  ax-cnre 8049  ax-pre-ltirr 8050  ax-pre-ltwlin 8051  ax-pre-lttrn 8052  ax-pre-apti 8053  ax-pre-ltadd 8054  ax-pre-mulgt0 8055  ax-pre-mulext 8056  ax-arch 8057
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-po 4348  df-iso 4349  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-1st 6236  df-2nd 6237  df-pnf 8122  df-mnf 8123  df-xr 8124  df-ltxr 8125  df-le 8126  df-sub 8258  df-neg 8259  df-reap 8661  df-ap 8668  df-div 8759  df-inn 9050  df-2 9108  df-n0 9309  df-z 9386  df-uz 9662  df-q 9754  df-rp 9789
This theorem is referenced by:  ioo0  10415  ioom  10416  ico0  10417  ioc0  10418  blssps  14949  blss  14950  tgqioo  15077
  Copyright terms: Public domain W3C validator