ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnxr GIF version

Theorem qbtwnxr 10135
Description: The rational numbers are dense in *: any two extended real numbers have a rational between them. (Contributed by NM, 6-Feb-2007.) (Proof shortened by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
qbtwnxr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnxr
StepHypRef Expression
1 elxr 9661 . . 3 (𝐴 ∈ ℝ* ↔ (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
2 elxr 9661 . . . . 5 (𝐵 ∈ ℝ* ↔ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞))
3 qbtwnre 10134 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
433expia 1184 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5 simpl 108 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 ∈ ℝ)
6 peano2re 7990 . . . . . . . . . 10 (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ)
76adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 + 1) ∈ ℝ)
8 ltp1 8694 . . . . . . . . . 10 (𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
98adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → 𝐴 < (𝐴 + 1))
10 qbtwnre 10134 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ (𝐴 + 1) ∈ ℝ ∧ 𝐴 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
115, 7, 9, 10syl3anc 1217 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)))
12 qre 9512 . . . . . . . . . . . . . 14 (𝑥 ∈ ℚ → 𝑥 ∈ ℝ)
13 ltpnf 9665 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ → 𝑥 < +∞)
1412, 13syl 14 . . . . . . . . . . . . 13 (𝑥 ∈ ℚ → 𝑥 < +∞)
1514adantl 275 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < +∞)
16 simplr 520 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝐵 = +∞)
1715, 16breqtrrd 3988 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → 𝑥 < 𝐵)
1817a1d 22 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → (𝑥 < (𝐴 + 1) → 𝑥 < 𝐵))
1918anim2d 335 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 = +∞) ∧ 𝑥 ∈ ℚ) → ((𝐴 < 𝑥𝑥 < (𝐴 + 1)) → (𝐴 < 𝑥𝑥 < 𝐵)))
2019reximdva 2556 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < (𝐴 + 1)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2111, 20mpd 13 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
2221a1d 22 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
23 rexr 7902 . . . . . . 7 (𝐴 ∈ ℝ → 𝐴 ∈ ℝ*)
24 breq2 3965 . . . . . . . . 9 (𝐵 = -∞ → (𝐴 < 𝐵𝐴 < -∞))
2524adantl 275 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵𝐴 < -∞))
26 nltmnf 9673 . . . . . . . . . 10 (𝐴 ∈ ℝ* → ¬ 𝐴 < -∞)
2726adantr 274 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐵 = -∞) → ¬ 𝐴 < -∞)
2827pm2.21d 609 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < -∞ → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
2925, 28sylbid 149 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3023, 29sylan 281 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
314, 22, 303jaodan 1285 . . . . 5 ((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
322, 31sylan2b 285 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
33 breq1 3964 . . . . . 6 (𝐴 = +∞ → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
3433adantr 274 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ +∞ < 𝐵))
35 pnfnlt 9672 . . . . . . 7 (𝐵 ∈ ℝ* → ¬ +∞ < 𝐵)
3635adantl 275 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → ¬ +∞ < 𝐵)
3736pm2.21d 609 . . . . 5 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (+∞ < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
3834, 37sylbid 149 . . . 4 ((𝐴 = +∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
39 peano2rem 8121 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) ∈ ℝ)
4039adantl 275 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) ∈ ℝ)
41 simpr 109 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ℝ)
42 ltm1 8696 . . . . . . . . . 10 (𝐵 ∈ ℝ → (𝐵 − 1) < 𝐵)
4342adantl 275 . . . . . . . . 9 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐵 − 1) < 𝐵)
44 qbtwnre 10134 . . . . . . . . 9 (((𝐵 − 1) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 − 1) < 𝐵) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
4540, 41, 43, 44syl3anc 1217 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵))
46 simpll 519 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 = -∞)
4712adantl 275 . . . . . . . . . . . . 13 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝑥 ∈ ℝ)
48 mnflt 9668 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → -∞ < 𝑥)
4947, 48syl 14 . . . . . . . . . . . 12 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → -∞ < 𝑥)
5046, 49eqbrtrd 3982 . . . . . . . . . . 11 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → 𝐴 < 𝑥)
5150a1d 22 . . . . . . . . . 10 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → ((𝐵 − 1) < 𝑥𝐴 < 𝑥))
5251anim1d 334 . . . . . . . . 9 (((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) ∧ 𝑥 ∈ ℚ) → (((𝐵 − 1) < 𝑥𝑥 < 𝐵) → (𝐴 < 𝑥𝑥 < 𝐵)))
5352reximdva 2556 . . . . . . . 8 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℚ ((𝐵 − 1) < 𝑥𝑥 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
5445, 53mpd 13 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
5554a1d 22 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
56 1re 7856 . . . . . . . . . 10 1 ∈ ℝ
57 mnflt 9668 . . . . . . . . . 10 (1 ∈ ℝ → -∞ < 1)
5856, 57ax-mp 5 . . . . . . . . 9 -∞ < 1
59 breq1 3964 . . . . . . . . 9 (𝐴 = -∞ → (𝐴 < 1 ↔ -∞ < 1))
6058, 59mpbiri 167 . . . . . . . 8 (𝐴 = -∞ → 𝐴 < 1)
61 ltpnf 9665 . . . . . . . . . 10 (1 ∈ ℝ → 1 < +∞)
6256, 61ax-mp 5 . . . . . . . . 9 1 < +∞
63 breq2 3965 . . . . . . . . 9 (𝐵 = +∞ → (1 < 𝐵 ↔ 1 < +∞))
6462, 63mpbiri 167 . . . . . . . 8 (𝐵 = +∞ → 1 < 𝐵)
65 1z 9172 . . . . . . . . . 10 1 ∈ ℤ
66 zq 9513 . . . . . . . . . 10 (1 ∈ ℤ → 1 ∈ ℚ)
6765, 66ax-mp 5 . . . . . . . . 9 1 ∈ ℚ
68 breq2 3965 . . . . . . . . . . 11 (𝑥 = 1 → (𝐴 < 𝑥𝐴 < 1))
69 breq1 3964 . . . . . . . . . . 11 (𝑥 = 1 → (𝑥 < 𝐵 ↔ 1 < 𝐵))
7068, 69anbi12d 465 . . . . . . . . . 10 (𝑥 = 1 → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < 1 ∧ 1 < 𝐵)))
7170rspcev 2813 . . . . . . . . 9 ((1 ∈ ℚ ∧ (𝐴 < 1 ∧ 1 < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7267, 71mpan 421 . . . . . . . 8 ((𝐴 < 1 ∧ 1 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7360, 64, 72syl2an 287 . . . . . . 7 ((𝐴 = -∞ ∧ 𝐵 = +∞) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
7473a1d 22 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = +∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
75 3mix3 1153 . . . . . . . 8 (𝐴 = -∞ → (𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞))
7675, 1sylibr 133 . . . . . . 7 (𝐴 = -∞ → 𝐴 ∈ ℝ*)
7776, 29sylan 281 . . . . . 6 ((𝐴 = -∞ ∧ 𝐵 = -∞) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
7855, 74, 773jaodan 1285 . . . . 5 ((𝐴 = -∞ ∧ (𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞)) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
792, 78sylan2b 285 . . . 4 ((𝐴 = -∞ ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
8032, 38, 793jaoian 1284 . . 3 (((𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞) ∧ 𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
811, 80sylanb 282 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵)))
82813impia 1179 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  w3o 962  w3a 963   = wceq 1332  wcel 2125  wrex 2433   class class class wbr 3961  (class class class)co 5814  cr 7710  1c1 7712   + caddc 7714  +∞cpnf 7888  -∞cmnf 7889  *cxr 7890   < clt 7891  cmin 8025  cz 9146  cq 9506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-13 2127  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-un 4388  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-mulrcl 7810  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-0lt1 7817  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-precex 7821  ax-cnre 7822  ax-pre-ltirr 7823  ax-pre-ltwlin 7824  ax-pre-lttrn 7825  ax-pre-apti 7826  ax-pre-ltadd 7827  ax-pre-mulgt0 7828  ax-pre-mulext 7829  ax-arch 7830
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-nel 2420  df-ral 2437  df-rex 2438  df-reu 2439  df-rmo 2440  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-po 4251  df-iso 4252  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-1st 6078  df-2nd 6079  df-pnf 7893  df-mnf 7894  df-xr 7895  df-ltxr 7896  df-le 7897  df-sub 8027  df-neg 8028  df-reap 8429  df-ap 8436  df-div 8525  df-inn 8813  df-2 8871  df-n0 9070  df-z 9147  df-uz 9419  df-q 9507  df-rp 9539
This theorem is referenced by:  ioo0  10137  ioom  10138  ico0  10139  ioc0  10140  blssps  12766  blss  12767  tgqioo  12886
  Copyright terms: Public domain W3C validator