ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr3d GIF version

Theorem 3sstr3d 3186
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.)
Hypotheses
Ref Expression
3sstr3d.1 (𝜑𝐴𝐵)
3sstr3d.2 (𝜑𝐴 = 𝐶)
3sstr3d.3 (𝜑𝐵 = 𝐷)
Assertion
Ref Expression
3sstr3d (𝜑𝐶𝐷)

Proof of Theorem 3sstr3d
StepHypRef Expression
1 3sstr3d.1 . 2 (𝜑𝐴𝐵)
2 3sstr3d.2 . . 3 (𝜑𝐴 = 𝐶)
3 3sstr3d.3 . . 3 (𝜑𝐵 = 𝐷)
42, 3sseq12d 3173 . 2 (𝜑 → (𝐴𝐵𝐶𝐷))
51, 4mpbid 146 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1343  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  fnsnsplitss  5684
  Copyright terms: Public domain W3C validator