![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 3sstr3d | GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 1-Oct-2000.) |
Ref | Expression |
---|---|
3sstr3d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr3d.2 | ⊢ (𝜑 → 𝐴 = 𝐶) |
3sstr3d.3 | ⊢ (𝜑 → 𝐵 = 𝐷) |
Ref | Expression |
---|---|
3sstr3d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr3d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr3d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐶) | |
3 | 3sstr3d.3 | . . 3 ⊢ (𝜑 → 𝐵 = 𝐷) | |
4 | 2, 3 | sseq12d 3210 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐷)) |
5 | 1, 4 | mpbid 147 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3159 df-ss 3166 |
This theorem is referenced by: fnsnsplitss 5757 |
Copyright terms: Public domain | W3C validator |