ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4d GIF version

Theorem 3sstr4d 3224
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4d.1 (𝜑𝐴𝐵)
3sstr4d.2 (𝜑𝐶 = 𝐴)
3sstr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3sstr4d (𝜑𝐶𝐷)

Proof of Theorem 3sstr4d
StepHypRef Expression
1 3sstr4d.1 . 2 (𝜑𝐴𝐵)
2 3sstr4d.2 . . 3 (𝜑𝐶 = 𝐴)
3 3sstr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3sseq12d 3210 . 2 (𝜑 → (𝐶𝐷𝐴𝐵))
51, 4mpbird 167 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3159  df-ss 3166
This theorem is referenced by:  rdgss  6436  sucinc2  6499  oawordi  6522  nnnninf  7185  fzoss1  10238  fzoss2  10239  lspss  13895  clsss  14286  ntrss  14287  sslm  14415  txss12  14434  metss2lem  14665  xmettxlem  14677  xmettx  14678  plyss  14884  nnsf  15495  nninfself  15503
  Copyright terms: Public domain W3C validator