ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4d GIF version

Theorem 3sstr4d 3228
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4d.1 (𝜑𝐴𝐵)
3sstr4d.2 (𝜑𝐶 = 𝐴)
3sstr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3sstr4d (𝜑𝐶𝐷)

Proof of Theorem 3sstr4d
StepHypRef Expression
1 3sstr4d.1 . 2 (𝜑𝐴𝐵)
2 3sstr4d.2 . . 3 (𝜑𝐶 = 𝐴)
3 3sstr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3sseq12d 3214 . 2 (𝜑 → (𝐶𝐷𝐴𝐵))
51, 4mpbird 167 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  rdgss  6441  sucinc2  6504  oawordi  6527  nnnninf  7192  fzoss1  10247  fzoss2  10248  lspss  13955  clsss  14354  ntrss  14355  sslm  14483  txss12  14502  metss2lem  14733  xmettxlem  14745  xmettx  14746  plyss  14974  nnsf  15649  nninfself  15657
  Copyright terms: Public domain W3C validator