Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3sstr4d | GIF version |
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
Ref | Expression |
---|---|
3sstr4d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
3sstr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
3sstr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
Ref | Expression |
---|---|
3sstr4d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3sstr4d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | 3sstr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
3 | 3sstr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
4 | 2, 3 | sseq12d 3155 | . 2 ⊢ (𝜑 → (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵)) |
5 | 1, 4 | mpbird 166 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1332 ⊆ wss 3098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-11 1483 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-in 3104 df-ss 3111 |
This theorem is referenced by: rdgss 6320 sucinc2 6382 oawordi 6405 nnnninf 7054 fzoss1 10048 fzoss2 10049 clsss 12457 ntrss 12458 sslm 12586 txss12 12605 metss2lem 12836 xmettxlem 12848 xmettx 12849 nnsf 13517 nninfself 13526 |
Copyright terms: Public domain | W3C validator |