| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4d | GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3sstr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3sstr4d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 3sstr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 3 | 3sstr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | sseq12d 3255 | . 2 ⊢ (𝜑 → (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: rdgss 6527 sucinc2 6590 oawordi 6613 nnnninf 7289 fzoss1 10365 fzoss2 10366 swrd0g 11187 lspss 14357 clsss 14786 ntrss 14787 sslm 14915 txss12 14934 metss2lem 15165 xmettxlem 15177 xmettx 15178 plyss 15406 ifpsnprss 16040 nnsf 16330 nninfself 16338 |
| Copyright terms: Public domain | W3C validator |