| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4d | GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4d.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4d.2 | ⊢ (𝜑 → 𝐶 = 𝐴) |
| 3sstr4d.3 | ⊢ (𝜑 → 𝐷 = 𝐵) |
| Ref | Expression |
|---|---|
| 3sstr4d | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4d.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 3sstr4d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐴) | |
| 3 | 3sstr4d.3 | . . 3 ⊢ (𝜑 → 𝐷 = 𝐵) | |
| 4 | 2, 3 | sseq12d 3215 | . 2 ⊢ (𝜑 → (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵)) |
| 5 | 1, 4 | mpbird 167 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: rdgss 6450 sucinc2 6513 oawordi 6536 nnnninf 7201 fzoss1 10264 fzoss2 10265 lspss 14031 clsss 14438 ntrss 14439 sslm 14567 txss12 14586 metss2lem 14817 xmettxlem 14829 xmettx 14830 plyss 15058 nnsf 15736 nninfself 15744 |
| Copyright terms: Public domain | W3C validator |