ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3sstr4d GIF version

Theorem 3sstr4d 3269
Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 30-Nov-1995.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
Hypotheses
Ref Expression
3sstr4d.1 (𝜑𝐴𝐵)
3sstr4d.2 (𝜑𝐶 = 𝐴)
3sstr4d.3 (𝜑𝐷 = 𝐵)
Assertion
Ref Expression
3sstr4d (𝜑𝐶𝐷)

Proof of Theorem 3sstr4d
StepHypRef Expression
1 3sstr4d.1 . 2 (𝜑𝐴𝐵)
2 3sstr4d.2 . . 3 (𝜑𝐶 = 𝐴)
3 3sstr4d.3 . . 3 (𝜑𝐷 = 𝐵)
42, 3sseq12d 3255 . 2 (𝜑 → (𝐶𝐷𝐴𝐵))
51, 4mpbird 167 1 (𝜑𝐶𝐷)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  rdgss  6527  sucinc2  6590  oawordi  6613  nnnninf  7289  fzoss1  10365  fzoss2  10366  swrd0g  11187  lspss  14357  clsss  14786  ntrss  14787  sslm  14915  txss12  14934  metss2lem  15165  xmettxlem  15177  xmettx  15178  plyss  15406  ifpsnprss  16040  nnsf  16330  nninfself  16338
  Copyright terms: Public domain W3C validator