HomeHome Intuitionistic Logic Explorer
Theorem List (p. 33 of 142)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 3201-3300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremeqimss 3201 Equality implies the subclass relation. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 21-Jun-2011.)
(𝐴 = 𝐵𝐴𝐵)
 
Theoremeqimss2 3202 Equality implies the subclass relation. (Contributed by NM, 23-Nov-2003.)
(𝐵 = 𝐴𝐴𝐵)
 
Theoremeqimssi 3203 Infer subclass relationship from equality. (Contributed by NM, 6-Jan-2007.)
𝐴 = 𝐵       𝐴𝐵
 
Theoremeqimss2i 3204 Infer subclass relationship from equality. (Contributed by NM, 7-Jan-2007.)
𝐴 = 𝐵       𝐵𝐴
 
Theoremnssne1 3205 Two classes are different if they don't include the same class. (Contributed by NM, 23-Apr-2015.)
((𝐴𝐵 ∧ ¬ 𝐴𝐶) → 𝐵𝐶)
 
Theoremnssne2 3206 Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.)
((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
 
Theoremnssr 3207* Negation of subclass relationship. One direction of Exercise 13 of [TakeutiZaring] p. 18. (Contributed by Jim Kingdon, 15-Jul-2018.)
(∃𝑥(𝑥𝐴 ∧ ¬ 𝑥𝐵) → ¬ 𝐴𝐵)
 
Theoremnelss 3208 Demonstrate by witnesses that two classes lack a subclass relation. (Contributed by Stefan O'Rear, 5-Feb-2015.)
((𝐴𝐵 ∧ ¬ 𝐴𝐶) → ¬ 𝐵𝐶)
 
Theoremssrexf 3209 Restricted existential quantification follows from a subclass relationship. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
 
Theoremssrmof 3210 "At most one" existential quantification restricted to a subclass. (Contributed by Thierry Arnoux, 8-Oct-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐴𝐵 → (∃*𝑥𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
 
Theoremssralv 3211* Quantification restricted to a subclass. (Contributed by NM, 11-Mar-2006.)
(𝐴𝐵 → (∀𝑥𝐵 𝜑 → ∀𝑥𝐴 𝜑))
 
Theoremssrexv 3212* Existential quantification restricted to a subclass. (Contributed by NM, 11-Jan-2007.)
(𝐴𝐵 → (∃𝑥𝐴 𝜑 → ∃𝑥𝐵 𝜑))
 
Theoremralss 3213* Restricted universal quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝐴𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 (𝑥𝐴𝜑)))
 
Theoremrexss 3214* Restricted existential quantification on a subset in terms of superset. (Contributed by Stefan O'Rear, 3-Apr-2015.)
(𝐴𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐵 (𝑥𝐴𝜑)))
 
Theoremss2ab 3215 Class abstractions in a subclass relationship. (Contributed by NM, 3-Jul-1994.)
({𝑥𝜑} ⊆ {𝑥𝜓} ↔ ∀𝑥(𝜑𝜓))
 
Theoremabss 3216* Class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
({𝑥𝜑} ⊆ 𝐴 ↔ ∀𝑥(𝜑𝑥𝐴))
 
Theoremssab 3217* Subclass of a class abstraction. (Contributed by NM, 16-Aug-2006.)
(𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥(𝑥𝐴𝜑))
 
Theoremssabral 3218* The relation for a subclass of a class abstraction is equivalent to restricted quantification. (Contributed by NM, 6-Sep-2006.)
(𝐴 ⊆ {𝑥𝜑} ↔ ∀𝑥𝐴 𝜑)
 
Theoremss2abi 3219 Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995.)
(𝜑𝜓)       {𝑥𝜑} ⊆ {𝑥𝜓}
 
Theoremss2abdv 3220* Deduction of abstraction subclass from implication. (Contributed by NM, 29-Jul-2011.)
(𝜑 → (𝜓𝜒))       (𝜑 → {𝑥𝜓} ⊆ {𝑥𝜒})
 
Theoremabssdv 3221* Deduction of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
(𝜑 → (𝜓𝑥𝐴))       (𝜑 → {𝑥𝜓} ⊆ 𝐴)
 
Theoremabssi 3222* Inference of abstraction subclass from implication. (Contributed by NM, 20-Jan-2006.)
(𝜑𝑥𝐴)       {𝑥𝜑} ⊆ 𝐴
 
Theoremss2rab 3223 Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999.)
({𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓} ↔ ∀𝑥𝐴 (𝜑𝜓))
 
Theoremrabss 3224* Restricted class abstraction in a subclass relationship. (Contributed by NM, 16-Aug-2006.)
({𝑥𝐴𝜑} ⊆ 𝐵 ↔ ∀𝑥𝐴 (𝜑𝑥𝐵))
 
Theoremssrab 3225* Subclass of a restricted class abstraction. (Contributed by NM, 16-Aug-2006.)
(𝐵 ⊆ {𝑥𝐴𝜑} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜑))
 
Theoremssrabdv 3226* Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 31-Aug-2006.)
(𝜑𝐵𝐴)    &   ((𝜑𝑥𝐵) → 𝜓)       (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
 
Theoremrabssdv 3227* Subclass of a restricted class abstraction (deduction form). (Contributed by NM, 2-Feb-2015.)
((𝜑𝑥𝐴𝜓) → 𝑥𝐵)       (𝜑 → {𝑥𝐴𝜓} ⊆ 𝐵)
 
Theoremss2rabdv 3228* Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006.)
((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → {𝑥𝐴𝜓} ⊆ {𝑥𝐴𝜒})
 
Theoremss2rabi 3229 Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999.)
(𝑥𝐴 → (𝜑𝜓))       {𝑥𝐴𝜑} ⊆ {𝑥𝐴𝜓}
 
Theoremrabss2 3230* Subclass law for restricted abstraction. (Contributed by NM, 18-Dec-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴𝐵 → {𝑥𝐴𝜑} ⊆ {𝑥𝐵𝜑})
 
Theoremssab2 3231* Subclass relation for the restriction of a class abstraction. (Contributed by NM, 31-Mar-1995.)
{𝑥 ∣ (𝑥𝐴𝜑)} ⊆ 𝐴
 
Theoremssrab2 3232* Subclass relation for a restricted class. (Contributed by NM, 19-Mar-1997.)
{𝑥𝐴𝜑} ⊆ 𝐴
 
Theoremssrab3 3233* Subclass relation for a restricted class abstraction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
𝐵 = {𝑥𝐴𝜑}       𝐵𝐴
 
Theoremssrabeq 3234* If the restricting class of a restricted class abstraction is a subset of this restricted class abstraction, it is equal to this restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.)
(𝑉 ⊆ {𝑥𝑉𝜑} ↔ 𝑉 = {𝑥𝑉𝜑})
 
Theoremrabssab 3235 A restricted class is a subclass of the corresponding unrestricted class. (Contributed by Mario Carneiro, 23-Dec-2016.)
{𝑥𝐴𝜑} ⊆ {𝑥𝜑}
 
Theoremuniiunlem 3236* A subset relationship useful for converting union to indexed union using dfiun2 or dfiun2g and intersection to indexed intersection using dfiin2 . (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
(∀𝑥𝐴 𝐵𝐷 → (∀𝑥𝐴 𝐵𝐶 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶))
 
2.1.13  The difference, union, and intersection of two classes
 
2.1.13.1  The difference of two classes
 
Theoremdfdif3 3237* Alternate definition of class difference. Definition of relative set complement in Section 2.3 of [Pierik], p. 10. (Contributed by BJ and Jim Kingdon, 16-Jun-2022.)
(𝐴𝐵) = {𝑥𝐴 ∣ ∀𝑦𝐵 𝑥𝑦}
 
Theoremdifeq1 3238 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremdifeq2 3239 Equality theorem for class difference. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremdifeq12 3240 Equality theorem for class difference. (Contributed by FL, 31-Aug-2009.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
 
Theoremdifeq1i 3241 Inference adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremdifeq2i 3242 Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremdifeq12i 3243 Equality inference for class difference. (Contributed by NM, 29-Aug-2004.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremdifeq1d 3244 Deduction adding difference to the right in a class equality. (Contributed by NM, 15-Nov-2002.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremdifeq2d 3245 Deduction adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremdifeq12d 3246 Equality deduction for class difference. (Contributed by FL, 29-May-2014.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremdifeqri 3247* Inference from membership to difference. (Contributed by NM, 17-May-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ 𝑥𝐶)       (𝐴𝐵) = 𝐶
 
Theoremnfdif 3248 Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003.) (Revised by Mario Carneiro, 13-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremeldifi 3249 Implication of membership in a class difference. (Contributed by NM, 29-Apr-1994.)
(𝐴 ∈ (𝐵𝐶) → 𝐴𝐵)
 
Theoremeldifn 3250 Implication of membership in a class difference. (Contributed by NM, 3-May-1994.)
(𝐴 ∈ (𝐵𝐶) → ¬ 𝐴𝐶)
 
Theoremelndif 3251 A set does not belong to a class excluding it. (Contributed by NM, 27-Jun-1994.)
(𝐴𝐵 → ¬ 𝐴 ∈ (𝐶𝐵))
 
Theoremdifdif 3252 Double class difference. Exercise 11 of [TakeutiZaring] p. 22. (Contributed by NM, 17-May-1998.)
(𝐴 ∖ (𝐵𝐴)) = 𝐴
 
Theoremdifss 3253 Subclass relationship for class difference. Exercise 14 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵) ⊆ 𝐴
 
Theoremdifssd 3254 A difference of two classes is contained in the minuend. Deduction form of difss 3253. (Contributed by David Moews, 1-May-2017.)
(𝜑 → (𝐴𝐵) ⊆ 𝐴)
 
Theoremdifss2 3255 If a class is contained in a difference, it is contained in the minuend. (Contributed by David Moews, 1-May-2017.)
(𝐴 ⊆ (𝐵𝐶) → 𝐴𝐵)
 
Theoremdifss2d 3256 If a class is contained in a difference, it is contained in the minuend. Deduction form of difss2 3255. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴 ⊆ (𝐵𝐶))       (𝜑𝐴𝐵)
 
Theoremssdifss 3257 Preservation of a subclass relationship by class difference. (Contributed by NM, 15-Feb-2007.)
(𝐴𝐵 → (𝐴𝐶) ⊆ 𝐵)
 
Theoremddifnel 3258* Double complement under universal class. The hypothesis corresponds to stability of membership in 𝐴, which is weaker than decidability (see dcstab 839). Actually, the conclusion is a characterization of stability of membership in a class (see ddifstab 3259) . Exercise 4.10(s) of [Mendelson] p. 231, but with an additional hypothesis. For a version without a hypothesis, but which only states that 𝐴 is a subset of V ∖ (V ∖ 𝐴), see ddifss 3365. (Contributed by Jim Kingdon, 21-Jul-2018.)
𝑥 ∈ (V ∖ 𝐴) → 𝑥𝐴)       (V ∖ (V ∖ 𝐴)) = 𝐴
 
Theoremddifstab 3259* A class is equal to its double complement if and only if it is stable (that is, membership in it is a stable property). (Contributed by BJ, 12-Dec-2021.)
((V ∖ (V ∖ 𝐴)) = 𝐴 ↔ ∀𝑥STAB 𝑥𝐴)
 
Theoremssconb 3260 Contraposition law for subsets. (Contributed by NM, 22-Mar-1998.)
((𝐴𝐶𝐵𝐶) → (𝐴 ⊆ (𝐶𝐵) ↔ 𝐵 ⊆ (𝐶𝐴)))
 
Theoremsscon 3261 Contraposition law for subsets. Exercise 15 of [TakeutiZaring] p. 22. (Contributed by NM, 22-Mar-1998.)
(𝐴𝐵 → (𝐶𝐵) ⊆ (𝐶𝐴))
 
Theoremssdif 3262 Difference law for subsets. (Contributed by NM, 28-May-1998.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremssdifd 3263 If 𝐴 is contained in 𝐵, then (𝐴𝐶) is contained in (𝐵𝐶). Deduction form of ssdif 3262. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremsscond 3264 If 𝐴 is contained in 𝐵, then (𝐶𝐵) is contained in (𝐶𝐴). Deduction form of sscon 3261. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)       (𝜑 → (𝐶𝐵) ⊆ (𝐶𝐴))
 
Theoremssdifssd 3265 If 𝐴 is contained in 𝐵, then (𝐴𝐶) is also contained in 𝐵. Deduction form of ssdifss 3257. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)       (𝜑 → (𝐴𝐶) ⊆ 𝐵)
 
Theoremssdif2d 3266 If 𝐴 is contained in 𝐵 and 𝐶 is contained in 𝐷, then (𝐴𝐷) is contained in (𝐵𝐶). Deduction form. (Contributed by David Moews, 1-May-2017.)
(𝜑𝐴𝐵)    &   (𝜑𝐶𝐷)       (𝜑 → (𝐴𝐷) ⊆ (𝐵𝐶))
 
Theoremraldifb 3267 Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
(∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)
 
2.1.13.2  The union of two classes
 
Theoremelun 3268 Expansion of membership in class union. Theorem 12 of [Suppes] p. 25. (Contributed by NM, 7-Aug-1994.)
(𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
 
Theoremuneqri 3269* Inference from membership to union. (Contributed by NM, 5-Aug-1993.)
((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)       (𝐴𝐵) = 𝐶
 
Theoremunidm 3270 Idempotent law for union of classes. Theorem 23 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
(𝐴𝐴) = 𝐴
 
Theoremuncom 3271 Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴𝐵) = (𝐵𝐴)
 
Theoremequncom 3272 If a class equals the union of two other classes, then it equals the union of those two classes commuted. (Contributed by Alan Sare, 18-Feb-2012.)
(𝐴 = (𝐵𝐶) ↔ 𝐴 = (𝐶𝐵))
 
Theoremequncomi 3273 Inference form of equncom 3272. (Contributed by Alan Sare, 18-Feb-2012.)
𝐴 = (𝐵𝐶)       𝐴 = (𝐶𝐵)
 
Theoremuneq1 3274 Equality theorem for union of two classes. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremuneq2 3275 Equality theorem for the union of two classes. (Contributed by NM, 5-Aug-1993.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremuneq12 3276 Equality theorem for union of two classes. (Contributed by NM, 29-Mar-1998.)
((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴𝐶) = (𝐵𝐷))
 
Theoremuneq1i 3277 Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremuneq2i 3278 Inference adding union to the left in a class equality. (Contributed by NM, 30-Aug-1993.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremuneq12i 3279 Equality inference for union of two classes. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.)
𝐴 = 𝐵    &   𝐶 = 𝐷       (𝐴𝐶) = (𝐵𝐷)
 
Theoremuneq1d 3280 Deduction adding union to the right in a class equality. (Contributed by NM, 29-Mar-1998.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremuneq2d 3281 Deduction adding union to the left in a class equality. (Contributed by NM, 29-Mar-1998.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremuneq12d 3282 Equality deduction for union of two classes. (Contributed by NM, 29-Sep-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremnfun 3283 Bound-variable hypothesis builder for the union of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremunass 3284 Associative law for union of classes. Exercise 8 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴𝐵) ∪ 𝐶) = (𝐴 ∪ (𝐵𝐶))
 
Theoremun12 3285 A rearrangement of union. (Contributed by NM, 12-Aug-2004.)
(𝐴 ∪ (𝐵𝐶)) = (𝐵 ∪ (𝐴𝐶))
 
Theoremun23 3286 A rearrangement of union. (Contributed by NM, 12-Aug-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ 𝐵)
 
Theoremun4 3287 A rearrangement of the union of 4 classes. (Contributed by NM, 12-Aug-2004.)
((𝐴𝐵) ∪ (𝐶𝐷)) = ((𝐴𝐶) ∪ (𝐵𝐷))
 
Theoremunundi 3288 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremunundir 3289 Union distributes over itself. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremssun1 3290 Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.)
𝐴 ⊆ (𝐴𝐵)
 
Theoremssun2 3291 Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.)
𝐴 ⊆ (𝐵𝐴)
 
Theoremssun3 3292 Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.)
(𝐴𝐵𝐴 ⊆ (𝐵𝐶))
 
Theoremssun4 3293 Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.)
(𝐴𝐵𝐴 ⊆ (𝐶𝐵))
 
Theoremelun1 3294 Membership law for union of classes. (Contributed by NM, 5-Aug-1993.)
(𝐴𝐵𝐴 ∈ (𝐵𝐶))
 
Theoremelun2 3295 Membership law for union of classes. (Contributed by NM, 30-Aug-1993.)
(𝐴𝐵𝐴 ∈ (𝐶𝐵))
 
Theoremunss1 3296 Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremssequn1 3297 A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴𝐵 ↔ (𝐴𝐵) = 𝐵)
 
Theoremunss2 3298 Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.)
(𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremunss12 3299 Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.)
((𝐴𝐵𝐶𝐷) → (𝐴𝐶) ⊆ (𝐵𝐷))
 
Theoremssequn2 3300 A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.)
(𝐴𝐵 ↔ (𝐵𝐴) = 𝐵)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14113
  Copyright terms: Public domain < Previous  Next >