ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12d GIF version

Theorem sseq12d 3255
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseq1d.1 (𝜑𝐴 = 𝐵)
sseq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
sseq12d (𝜑 → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12d
StepHypRef Expression
1 sseq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21sseq1d 3253 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
3 sseq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43sseq2d 3254 . 2 (𝜑 → (𝐵𝐶𝐵𝐷))
52, 4bitrd 188 1 (𝜑 → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-in 3203  df-ss 3210
This theorem is referenced by:  3sstr3d  3268  3sstr4d  3269  ssdifeq0  3574  relcnvtr  5248  rdgisucinc  6537  oawordriexmid  6624  nnaword  6665  nnawordi  6669  sbthlem2  7133  isbth  7142  nninff  7297  nninfninc  7298  infnninf  7299  infnninfOLD  7300  nnnninf  7301  nnnninfeq  7303  nnnninfeq2  7304  nninfwlpoimlemg  7350  swrdval  11188  ennnfonelemkh  12991  ennnfonelemrnh  12995  isstruct2im  13050  isstruct2r  13051  basis1  14729  baspartn  14732  eltg  14734  metss  15176  isausgren  15973  wkslem1  16041  wkslem2  16042  iswlk  16044  wlkres  16098  0nninf  16400  nnsf  16401  peano4nninf  16402  nninfalllem1  16404  nninfself  16409
  Copyright terms: Public domain W3C validator