ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12d GIF version

Theorem sseq12d 3184
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseq1d.1 (𝜑𝐴 = 𝐵)
sseq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
sseq12d (𝜑 → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12d
StepHypRef Expression
1 sseq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21sseq1d 3182 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
3 sseq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43sseq2d 3183 . 2 (𝜑 → (𝐵𝐶𝐵𝐷))
52, 4bitrd 188 1 (𝜑 → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1353  wss 3127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-11 1504  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-in 3133  df-ss 3140
This theorem is referenced by:  3sstr3d  3197  3sstr4d  3198  ssdifeq0  3503  relcnvtr  5140  rdgisucinc  6376  oawordriexmid  6461  nnaword  6502  nnawordi  6506  sbthlem2  6947  isbth  6956  nninff  7111  infnninf  7112  infnninfOLD  7113  nnnninf  7114  nnnninfeq  7116  nnnninfeq2  7117  nninfwlpoimlemg  7163  ennnfonelemkh  12378  ennnfonelemrnh  12382  isstruct2im  12437  isstruct2r  12438  ressid2  12488  ressval2  12489  basis1  13096  baspartn  13099  eltg  13103  metss  13545  0nninf  14294  nnsf  14295  peano4nninf  14296  nninfalllem1  14298  nninfself  14303
  Copyright terms: Public domain W3C validator