![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > sseq12d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
sseq12d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | sseq1d 3209 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
3 | sseq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | sseq2d 3210 | . 2 ⊢ (𝜑 → (𝐵 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊆ wss 3154 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: 3sstr3d 3224 3sstr4d 3225 ssdifeq0 3530 relcnvtr 5186 rdgisucinc 6440 oawordriexmid 6525 nnaword 6566 nnawordi 6570 sbthlem2 7019 isbth 7028 nninff 7183 nninfninc 7184 infnninf 7185 infnninfOLD 7186 nnnninf 7187 nnnninfeq 7189 nnnninfeq2 7190 nninfwlpoimlemg 7236 ennnfonelemkh 12572 ennnfonelemrnh 12576 isstruct2im 12631 isstruct2r 12632 basis1 14226 baspartn 14229 eltg 14231 metss 14673 0nninf 15564 nnsf 15565 peano4nninf 15566 nninfalllem1 15568 nninfself 15573 |
Copyright terms: Public domain | W3C validator |