ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12d GIF version

Theorem sseq12d 3215
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseq1d.1 (𝜑𝐴 = 𝐵)
sseq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
sseq12d (𝜑 → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12d
StepHypRef Expression
1 sseq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21sseq1d 3213 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
3 sseq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43sseq2d 3214 . 2 (𝜑 → (𝐵𝐶𝐵𝐷))
52, 4bitrd 188 1 (𝜑 → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  3sstr3d  3228  3sstr4d  3229  ssdifeq0  3534  relcnvtr  5190  rdgisucinc  6452  oawordriexmid  6537  nnaword  6578  nnawordi  6582  sbthlem2  7033  isbth  7042  nninff  7197  nninfninc  7198  infnninf  7199  infnninfOLD  7200  nnnninf  7201  nnnninfeq  7203  nnnninfeq2  7204  nninfwlpoimlemg  7250  ennnfonelemkh  12654  ennnfonelemrnh  12658  isstruct2im  12713  isstruct2r  12714  basis1  14367  baspartn  14370  eltg  14372  metss  14814  0nninf  15735  nnsf  15736  peano4nninf  15737  nninfalllem1  15739  nninfself  15744
  Copyright terms: Public domain W3C validator