| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq12d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| sseq12d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | sseq1d 3213 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 3 | sseq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | sseq2d 3214 | . 2 ⊢ (𝜑 → (𝐵 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ⊆ wss 3157 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: 3sstr3d 3228 3sstr4d 3229 ssdifeq0 3534 relcnvtr 5190 rdgisucinc 6452 oawordriexmid 6537 nnaword 6578 nnawordi 6582 sbthlem2 7033 isbth 7042 nninff 7197 nninfninc 7198 infnninf 7199 infnninfOLD 7200 nnnninf 7201 nnnninfeq 7203 nnnninfeq2 7204 nninfwlpoimlemg 7250 ennnfonelemkh 12654 ennnfonelemrnh 12658 isstruct2im 12713 isstruct2r 12714 basis1 14367 baspartn 14370 eltg 14372 metss 14814 0nninf 15735 nnsf 15736 peano4nninf 15737 nninfalllem1 15739 nninfself 15744 |
| Copyright terms: Public domain | W3C validator |