ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12d GIF version

Theorem sseq12d 3211
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseq1d.1 (𝜑𝐴 = 𝐵)
sseq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
sseq12d (𝜑 → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12d
StepHypRef Expression
1 sseq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21sseq1d 3209 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
3 sseq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43sseq2d 3210 . 2 (𝜑 → (𝐵𝐶𝐵𝐷))
52, 4bitrd 188 1 (𝜑 → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1364  wss 3154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-in 3160  df-ss 3167
This theorem is referenced by:  3sstr3d  3224  3sstr4d  3225  ssdifeq0  3530  relcnvtr  5186  rdgisucinc  6440  oawordriexmid  6525  nnaword  6566  nnawordi  6570  sbthlem2  7019  isbth  7028  nninff  7183  nninfninc  7184  infnninf  7185  infnninfOLD  7186  nnnninf  7187  nnnninfeq  7189  nnnninfeq2  7190  nninfwlpoimlemg  7236  ennnfonelemkh  12572  ennnfonelemrnh  12576  isstruct2im  12631  isstruct2r  12632  basis1  14226  baspartn  14229  eltg  14231  metss  14673  0nninf  15564  nnsf  15565  peano4nninf  15566  nninfalllem1  15568  nninfself  15573
  Copyright terms: Public domain W3C validator