| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq12d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| sseq12d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | sseq1d 3233 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 3 | sseq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | sseq2d 3234 | . 2 ⊢ (𝜑 → (𝐵 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1375 ⊆ wss 3177 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-11 1532 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-ext 2191 |
| This theorem depends on definitions: df-bi 117 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-in 3183 df-ss 3190 |
| This theorem is referenced by: 3sstr3d 3248 3sstr4d 3249 ssdifeq0 3554 relcnvtr 5224 rdgisucinc 6501 oawordriexmid 6586 nnaword 6627 nnawordi 6631 sbthlem2 7093 isbth 7102 nninff 7257 nninfninc 7258 infnninf 7259 infnninfOLD 7260 nnnninf 7261 nnnninfeq 7263 nnnninfeq2 7264 nninfwlpoimlemg 7310 swrdval 11146 ennnfonelemkh 12949 ennnfonelemrnh 12953 isstruct2im 13008 isstruct2r 13009 basis1 14686 baspartn 14689 eltg 14691 metss 15133 isausgren 15930 0nninf 16281 nnsf 16282 peano4nninf 16283 nninfalllem1 16285 nninfself 16290 |
| Copyright terms: Public domain | W3C validator |