| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sseq12d | GIF version | ||
| Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
| Ref | Expression |
|---|---|
| sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| sseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| sseq12d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | 1 | sseq1d 3253 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
| 3 | sseq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 4 | 3 | sseq2d 3254 | . 2 ⊢ (𝜑 → (𝐵 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| 5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ⊆ wss 3197 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: 3sstr3d 3268 3sstr4d 3269 ssdifeq0 3574 relcnvtr 5248 rdgisucinc 6537 oawordriexmid 6624 nnaword 6665 nnawordi 6669 sbthlem2 7133 isbth 7142 nninff 7297 nninfninc 7298 infnninf 7299 infnninfOLD 7300 nnnninf 7301 nnnninfeq 7303 nnnninfeq2 7304 nninfwlpoimlemg 7350 swrdval 11188 ennnfonelemkh 12991 ennnfonelemrnh 12995 isstruct2im 13050 isstruct2r 13051 basis1 14729 baspartn 14732 eltg 14734 metss 15176 isausgren 15973 wkslem1 16041 wkslem2 16042 iswlk 16044 wlkres 16098 0nninf 16400 nnsf 16401 peano4nninf 16402 nninfalllem1 16404 nninfself 16409 |
| Copyright terms: Public domain | W3C validator |