ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sseq12d GIF version

Theorem sseq12d 3225
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.)
Hypotheses
Ref Expression
sseq1d.1 (𝜑𝐴 = 𝐵)
sseq12d.2 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
sseq12d (𝜑 → (𝐴𝐶𝐵𝐷))

Proof of Theorem sseq12d
StepHypRef Expression
1 sseq1d.1 . . 3 (𝜑𝐴 = 𝐵)
21sseq1d 3223 . 2 (𝜑 → (𝐴𝐶𝐵𝐶))
3 sseq12d.2 . . 3 (𝜑𝐶 = 𝐷)
43sseq2d 3224 . 2 (𝜑 → (𝐵𝐶𝐵𝐷))
52, 4bitrd 188 1 (𝜑 → (𝐴𝐶𝐵𝐷))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wss 3167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-in 3173  df-ss 3180
This theorem is referenced by:  3sstr3d  3238  3sstr4d  3239  ssdifeq0  3544  relcnvtr  5207  rdgisucinc  6478  oawordriexmid  6563  nnaword  6604  nnawordi  6608  sbthlem2  7067  isbth  7076  nninff  7231  nninfninc  7232  infnninf  7233  infnninfOLD  7234  nnnninf  7235  nnnninfeq  7237  nnnninfeq2  7238  nninfwlpoimlemg  7284  swrdval  11109  ennnfonelemkh  12827  ennnfonelemrnh  12831  isstruct2im  12886  isstruct2r  12887  basis1  14563  baspartn  14566  eltg  14568  metss  15010  0nninf  16015  nnsf  16016  peano4nninf  16017  nninfalllem1  16019  nninfself  16024
  Copyright terms: Public domain W3C validator