Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > sseq12d | GIF version |
Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999.) |
Ref | Expression |
---|---|
sseq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
sseq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
sseq12d | ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1d.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | 1 | sseq1d 3182 | . 2 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) |
3 | sseq12d.2 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
4 | 3 | sseq2d 3183 | . 2 ⊢ (𝜑 → (𝐵 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
5 | 2, 4 | bitrd 188 | 1 ⊢ (𝜑 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1353 ⊆ wss 3127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-11 1504 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-in 3133 df-ss 3140 |
This theorem is referenced by: 3sstr3d 3197 3sstr4d 3198 ssdifeq0 3503 relcnvtr 5140 rdgisucinc 6376 oawordriexmid 6461 nnaword 6502 nnawordi 6506 sbthlem2 6947 isbth 6956 nninff 7111 infnninf 7112 infnninfOLD 7113 nnnninf 7114 nnnninfeq 7116 nnnninfeq2 7117 nninfwlpoimlemg 7163 ennnfonelemkh 12378 ennnfonelemrnh 12382 isstruct2im 12437 isstruct2r 12438 ressid2 12488 ressval2 12489 basis1 13096 baspartn 13099 eltg 13103 metss 13545 0nninf 14294 nnsf 14295 peano4nninf 14296 nninfalllem1 14298 nninfself 14303 |
Copyright terms: Public domain | W3C validator |