![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fnsnsplitss | GIF version |
Description: Split a function into a single point and all the rest. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Jim Kingdon, 20-Jan-2023.) |
Ref | Expression |
---|---|
fnsnsplitss | ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹‘𝑋)⟩}) ⊆ 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difsnss 3740 | . . . 4 ⊢ (𝑋 ∈ 𝐴 → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ⊆ 𝐴) | |
2 | 1 | adantl 277 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐴 ∖ {𝑋}) ∪ {𝑋}) ⊆ 𝐴) |
3 | ssres2 4936 | . . 3 ⊢ (((𝐴 ∖ {𝑋}) ∪ {𝑋}) ⊆ 𝐴 → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) ⊆ (𝐹 ↾ 𝐴)) | |
4 | 2, 3 | syl 14 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) ⊆ (𝐹 ↾ 𝐴)) |
5 | resundi 4922 | . . 3 ⊢ (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) | |
6 | fnressn 5705 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ↾ {𝑋}) = {⟨𝑋, (𝐹‘𝑋)⟩}) | |
7 | 6 | uneq2d 3291 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ (𝐹 ↾ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹‘𝑋)⟩})) |
8 | 5, 7 | eqtrid 2222 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ↾ ((𝐴 ∖ {𝑋}) ∪ {𝑋})) = ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹‘𝑋)⟩})) |
9 | fnresdm 5327 | . . 3 ⊢ (𝐹 Fn 𝐴 → (𝐹 ↾ 𝐴) = 𝐹) | |
10 | 9 | adantr 276 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → (𝐹 ↾ 𝐴) = 𝐹) |
11 | 4, 8, 10 | 3sstr3d 3201 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ∈ 𝐴) → ((𝐹 ↾ (𝐴 ∖ {𝑋})) ∪ {⟨𝑋, (𝐹‘𝑋)⟩}) ⊆ 𝐹) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∖ cdif 3128 ∪ cun 3129 ⊆ wss 3131 {csn 3594 ⟨cop 3597 ↾ cres 4630 Fn wfn 5213 ‘cfv 5218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-rex 2461 df-reu 2462 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-br 4006 df-opab 4067 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 |
This theorem is referenced by: funresdfunsnss 5722 |
Copyright terms: Public domain | W3C validator |