| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4g | GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | sseq12i 3221 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | sylibr 134 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3166 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: rabss2 3276 unss2 3344 sslin 3399 ssopab2 4322 xpss12 4782 coss1 4833 coss2 4834 cnvss 4851 rnss 4908 ssres 4985 ssres2 4986 imass1 5057 imass2 5058 imadif 5354 imain 5356 ssoprab2 6001 suppssfv 6154 suppssov1 6155 tposss 6332 ss2ixp 6798 isumsplit 11802 isumrpcl 11805 |
| Copyright terms: Public domain | W3C validator |