| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3sstr4g | GIF version | ||
| Description: Substitution of equality into both sides of a subclass relationship. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
| Ref | Expression |
|---|---|
| 3sstr4g.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| 3sstr4g.2 | ⊢ 𝐶 = 𝐴 |
| 3sstr4g.3 | ⊢ 𝐷 = 𝐵 |
| Ref | Expression |
|---|---|
| 3sstr4g | ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3sstr4g.1 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 2 | 3sstr4g.2 | . . 3 ⊢ 𝐶 = 𝐴 | |
| 3 | 3sstr4g.3 | . . 3 ⊢ 𝐷 = 𝐵 | |
| 4 | 2, 3 | sseq12i 3229 | . 2 ⊢ (𝐶 ⊆ 𝐷 ↔ 𝐴 ⊆ 𝐵) |
| 5 | 1, 4 | sylibr 134 | 1 ⊢ (𝜑 → 𝐶 ⊆ 𝐷) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ⊆ wss 3174 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: rabss2 3284 unss2 3352 sslin 3407 ssopab2 4340 xpss12 4800 coss1 4851 coss2 4852 cnvss 4869 rnss 4927 ssres 5004 ssres2 5005 imass1 5076 imass2 5077 imadif 5373 imain 5375 ssoprab2 6024 suppssfv 6177 suppssov1 6178 tposss 6355 ss2ixp 6821 isumsplit 11917 isumrpcl 11920 |
| Copyright terms: Public domain | W3C validator |