| Step | Hyp | Ref
 | Expression | 
| 1 |   | bren 6806 | 
. . . . . . 7
⊢ (𝐴 ≈ 𝐵 ↔ ∃ℎ ℎ:𝐴–1-1-onto→𝐵) | 
| 2 | 1 | biimpi 120 | 
. . . . . 6
⊢ (𝐴 ≈ 𝐵 → ∃ℎ ℎ:𝐴–1-1-onto→𝐵) | 
| 3 | 2 | ad2antrr 488 | 
. . . . 5
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → ∃ℎ ℎ:𝐴–1-1-onto→𝐵) | 
| 4 |   | f1ofn 5505 | 
. . . . . . . . . . . 12
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ℎ Fn 𝐴) | 
| 5 | 4 | ad3antlr 493 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ℎ Fn 𝐴) | 
| 6 |   | f1ocnv 5517 | 
. . . . . . . . . . . . . 14
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ◡ℎ:𝐵–1-1-onto→𝐴) | 
| 7 | 6 | ad3antlr 493 | 
. . . . . . . . . . . . 13
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ◡ℎ:𝐵–1-1-onto→𝐴) | 
| 8 |   | f1of 5504 | 
. . . . . . . . . . . . 13
⊢ (◡ℎ:𝐵–1-1-onto→𝐴 → ◡ℎ:𝐵⟶𝐴) | 
| 9 | 7, 8 | syl 14 | 
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ◡ℎ:𝐵⟶𝐴) | 
| 10 |   | simpr 110 | 
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → 𝑦 ∈ 𝐵) | 
| 11 | 9, 10 | ffvelcdmd 5698 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (◡ℎ‘𝑦) ∈ 𝐴) | 
| 12 |   | fvco2 5630 | 
. . . . . . . . . . 11
⊢ ((ℎ Fn 𝐴 ∧ (◡ℎ‘𝑦) ∈ 𝐴) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = (𝑔‘(ℎ‘(◡ℎ‘𝑦)))) | 
| 13 | 5, 11, 12 | syl2anc 411 | 
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = (𝑔‘(ℎ‘(◡ℎ‘𝑦)))) | 
| 14 |   | fveqeq2 5567 | 
. . . . . . . . . . 11
⊢ (𝑥 = (◡ℎ‘𝑦) → (((𝑔 ∘ ℎ)‘𝑥) = 1o ↔ ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = 1o)) | 
| 15 |   | simplr 528 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) | 
| 16 | 14, 15, 11 | rspcdva 2873 | 
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ((𝑔 ∘ ℎ)‘(◡ℎ‘𝑦)) = 1o) | 
| 17 |   | simpllr 534 | 
. . . . . . . . . . . 12
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → ℎ:𝐴–1-1-onto→𝐵) | 
| 18 |   | f1ocnvfv2 5825 | 
. . . . . . . . . . . 12
⊢ ((ℎ:𝐴–1-1-onto→𝐵 ∧ 𝑦 ∈ 𝐵) → (ℎ‘(◡ℎ‘𝑦)) = 𝑦) | 
| 19 | 17, 18 | sylancom 420 | 
. . . . . . . . . . 11
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (ℎ‘(◡ℎ‘𝑦)) = 𝑦) | 
| 20 | 19 | fveq2d 5562 | 
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (𝑔‘(ℎ‘(◡ℎ‘𝑦))) = (𝑔‘𝑦)) | 
| 21 | 13, 16, 20 | 3eqtr3rd 2238 | 
. . . . . . . . 9
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) ∧ 𝑦 ∈ 𝐵) → (𝑔‘𝑦) = 1o) | 
| 22 | 21 | ralrimiva 2570 | 
. . . . . . . 8
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o) → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o) | 
| 23 | 22 | ex 115 | 
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o → ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o)) | 
| 24 | 23 | con3d 632 | 
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (¬ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o → ¬ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o)) | 
| 25 |   | fveq1 5557 | 
. . . . . . . . . . 11
⊢ (𝑓 = (𝑔 ∘ ℎ) → (𝑓‘𝑥) = ((𝑔 ∘ ℎ)‘𝑥)) | 
| 26 | 25 | eqeq1d 2205 | 
. . . . . . . . . 10
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓‘𝑥) = 1o ↔ ((𝑔 ∘ ℎ)‘𝑥) = 1o)) | 
| 27 | 26 | ralbidv 2497 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o)) | 
| 28 | 27 | notbid 668 | 
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ ℎ) → (¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o ↔ ¬ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o)) | 
| 29 | 25 | eqeq1d 2205 | 
. . . . . . . . 9
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((𝑓‘𝑥) = ∅ ↔ ((𝑔 ∘ ℎ)‘𝑥) = ∅)) | 
| 30 | 29 | rexbidv 2498 | 
. . . . . . . 8
⊢ (𝑓 = (𝑔 ∘ ℎ) → (∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅ ↔ ∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅)) | 
| 31 | 28, 30 | imbi12d 234 | 
. . . . . . 7
⊢ (𝑓 = (𝑔 ∘ ℎ) → ((¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅) ↔ (¬ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅))) | 
| 32 |   | ismkvmap 7220 | 
. . . . . . . . 9
⊢ (𝐴 ∈ Markov → (𝐴 ∈ Markov ↔
∀𝑓 ∈
(2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅))) | 
| 33 | 32 | ibi 176 | 
. . . . . . . 8
⊢ (𝐴 ∈ Markov →
∀𝑓 ∈
(2o ↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | 
| 34 | 33 | ad3antlr 493 | 
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ∀𝑓 ∈ (2o
↑𝑚 𝐴)(¬ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 (𝑓‘𝑥) = ∅)) | 
| 35 |   | simpr 110 | 
. . . . . . . . . . 11
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → 𝑔 ∈ (2o
↑𝑚 𝐵)) | 
| 36 |   | 2onn 6579 | 
. . . . . . . . . . . . 13
⊢
2o ∈ ω | 
| 37 |   | relen 6803 | 
. . . . . . . . . . . . . 14
⊢ Rel
≈ | 
| 38 | 37 | brrelex2i 4707 | 
. . . . . . . . . . . . 13
⊢ (𝐴 ≈ 𝐵 → 𝐵 ∈ V) | 
| 39 |   | elmapg 6720 | 
. . . . . . . . . . . . 13
⊢
((2o ∈ ω ∧ 𝐵 ∈ V) → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) | 
| 40 | 36, 38, 39 | sylancr 414 | 
. . . . . . . . . . . 12
⊢ (𝐴 ≈ 𝐵 → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) | 
| 41 | 40 | ad2antrr 488 | 
. . . . . . . . . . 11
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → (𝑔 ∈ (2o
↑𝑚 𝐵) ↔ 𝑔:𝐵⟶2o)) | 
| 42 | 35, 41 | mpbid 147 | 
. . . . . . . . . 10
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → 𝑔:𝐵⟶2o) | 
| 43 | 42 | adantr 276 | 
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → 𝑔:𝐵⟶2o) | 
| 44 |   | f1of 5504 | 
. . . . . . . . . 10
⊢ (ℎ:𝐴–1-1-onto→𝐵 → ℎ:𝐴⟶𝐵) | 
| 45 | 44 | adantl 277 | 
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ℎ:𝐴⟶𝐵) | 
| 46 |   | fco 5423 | 
. . . . . . . . 9
⊢ ((𝑔:𝐵⟶2o ∧ ℎ:𝐴⟶𝐵) → (𝑔 ∘ ℎ):𝐴⟶2o) | 
| 47 | 43, 45, 46 | syl2anc 411 | 
. . . . . . . 8
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (𝑔 ∘ ℎ):𝐴⟶2o) | 
| 48 |   | simpllr 534 | 
. . . . . . . . 9
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → 𝐴 ∈ Markov) | 
| 49 |   | elmapg 6720 | 
. . . . . . . . 9
⊢
((2o ∈ ω ∧ 𝐴 ∈ Markov) → ((𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴) ↔ (𝑔 ∘ ℎ):𝐴⟶2o)) | 
| 50 | 36, 48, 49 | sylancr 414 | 
. . . . . . . 8
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → ((𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴) ↔ (𝑔 ∘ ℎ):𝐴⟶2o)) | 
| 51 | 47, 50 | mpbird 167 | 
. . . . . . 7
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (𝑔 ∘ ℎ) ∈ (2o
↑𝑚 𝐴)) | 
| 52 | 31, 34, 51 | rspcdva 2873 | 
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (¬ ∀𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = 1o → ∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅)) | 
| 53 | 4 | ad2antlr 489 | 
. . . . . . . . . 10
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ℎ Fn 𝐴) | 
| 54 |   | fvco2 5630 | 
. . . . . . . . . 10
⊢ ((ℎ Fn 𝐴 ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ ℎ)‘𝑥) = (𝑔‘(ℎ‘𝑥))) | 
| 55 | 53, 54 | sylancom 420 | 
. . . . . . . . 9
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑔 ∘ ℎ)‘𝑥) = (𝑔‘(ℎ‘𝑥))) | 
| 56 | 55 | eqeq1d 2205 | 
. . . . . . . 8
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝑔 ∘ ℎ)‘𝑥) = ∅ ↔ (𝑔‘(ℎ‘𝑥)) = ∅)) | 
| 57 | 45 | ffvelcdmda 5697 | 
. . . . . . . . 9
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (ℎ‘𝑥) ∈ 𝐵) | 
| 58 |   | simpr 110 | 
. . . . . . . . . 10
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (ℎ‘𝑥)) → 𝑦 = (ℎ‘𝑥)) | 
| 59 | 58 | fveqeq2d 5566 | 
. . . . . . . . 9
⊢
((((((𝐴 ≈
𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) ∧ 𝑦 = (ℎ‘𝑥)) → ((𝑔‘𝑦) = ∅ ↔ (𝑔‘(ℎ‘𝑥)) = ∅)) | 
| 60 | 57, 59 | rspcedv 2872 | 
. . . . . . . 8
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → ((𝑔‘(ℎ‘𝑥)) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 61 | 56, 60 | sylbid 150 | 
. . . . . . 7
⊢
(((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) ∧ 𝑥 ∈ 𝐴) → (((𝑔 ∘ ℎ)‘𝑥) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 62 | 61 | rexlimdva 2614 | 
. . . . . 6
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (∃𝑥 ∈ 𝐴 ((𝑔 ∘ ℎ)‘𝑥) = ∅ → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 63 | 24, 52, 62 | 3syld 57 | 
. . . . 5
⊢ ((((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) ∧ ℎ:𝐴–1-1-onto→𝐵) → (¬ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 64 | 3, 63 | exlimddv 1913 | 
. . . 4
⊢ (((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) ∧ 𝑔 ∈ (2o
↑𝑚 𝐵)) → (¬ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 65 | 64 | ralrimiva 2570 | 
. . 3
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) → ∀𝑔 ∈ (2o
↑𝑚 𝐵)(¬ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅)) | 
| 66 |   | ismkvmap 7220 | 
. . . . 5
⊢ (𝐵 ∈ V → (𝐵 ∈ Markov ↔
∀𝑔 ∈
(2o ↑𝑚 𝐵)(¬ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅))) | 
| 67 | 38, 66 | syl 14 | 
. . . 4
⊢ (𝐴 ≈ 𝐵 → (𝐵 ∈ Markov ↔ ∀𝑔 ∈ (2o
↑𝑚 𝐵)(¬ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅))) | 
| 68 | 67 | adantr 276 | 
. . 3
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) → (𝐵 ∈ Markov ↔ ∀𝑔 ∈ (2o
↑𝑚 𝐵)(¬ ∀𝑦 ∈ 𝐵 (𝑔‘𝑦) = 1o → ∃𝑦 ∈ 𝐵 (𝑔‘𝑦) = ∅))) | 
| 69 | 65, 68 | mpbird 167 | 
. 2
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ∈ Markov) → 𝐵 ∈ Markov) | 
| 70 | 69 | ex 115 | 
1
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov)) |