Step | Hyp | Ref
| Expression |
1 | | cnre 7916 |
. . 3
⊢ (𝐴 ∈ ℂ →
∃𝑦 ∈ ℝ
∃𝑧 ∈ ℝ
𝐴 = (𝑦 + (i · 𝑧))) |
2 | | recn 7907 |
. . . . . . 7
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) |
3 | | ax-icn 7869 |
. . . . . . . 8
⊢ i ∈
ℂ |
4 | | recn 7907 |
. . . . . . . 8
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℂ) |
5 | | mulcl 7901 |
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ 𝑧
∈ ℂ) → (i · 𝑧) ∈ ℂ) |
6 | 3, 4, 5 | sylancr 412 |
. . . . . . 7
⊢ (𝑧 ∈ ℝ → (i
· 𝑧) ∈
ℂ) |
7 | | subcl 8118 |
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ (i
· 𝑧) ∈ ℂ)
→ (𝑦 − (i
· 𝑧)) ∈
ℂ) |
8 | 2, 6, 7 | syl2an 287 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 − (i · 𝑧)) ∈
ℂ) |
9 | 2 | adantr 274 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈
ℂ) |
10 | 6 | adantl 275 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· 𝑧) ∈
ℂ) |
11 | 9, 10, 9 | ppncand 8270 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) = (𝑦 + 𝑦)) |
12 | | readdcl 7900 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ) |
13 | 12 | anidms 395 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → (𝑦 + 𝑦) ∈ ℝ) |
14 | 13 | adantr 274 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ) |
15 | 11, 14 | eqeltrd 2247 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ) |
16 | 9, 10, 10 | pnncand 8269 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = ((i · 𝑧) + (i · 𝑧))) |
17 | 3 | a1i 9 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → i ∈
ℂ) |
18 | 4 | adantl 275 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈
ℂ) |
19 | 17, 18, 18 | adddid 7944 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· (𝑧 + 𝑧)) = ((i · 𝑧) + (i · 𝑧))) |
20 | 16, 19 | eqtr4d 2206 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = (i · (𝑧 + 𝑧))) |
21 | 20 | oveq2d 5869 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· ((𝑦 + (i ·
𝑧)) − (𝑦 − (i · 𝑧)))) = (i · (i ·
(𝑧 + 𝑧)))) |
22 | 18, 18 | addcld 7939 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℂ) |
23 | | mulass 7905 |
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ i ∈ ℂ ∧ (𝑧 + 𝑧) ∈ ℂ) → ((i · i)
· (𝑧 + 𝑧)) = (i · (i ·
(𝑧 + 𝑧)))) |
24 | 3, 3, 23 | mp3an12 1322 |
. . . . . . . . 9
⊢ ((𝑧 + 𝑧) ∈ ℂ → ((i · i)
· (𝑧 + 𝑧)) = (i · (i ·
(𝑧 + 𝑧)))) |
25 | 22, 24 | syl 14 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i
· i) · (𝑧 +
𝑧)) = (i · (i
· (𝑧 + 𝑧)))) |
26 | 21, 25 | eqtr4d 2206 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· ((𝑦 + (i ·
𝑧)) − (𝑦 − (i · 𝑧)))) = ((i · i) ·
(𝑧 + 𝑧))) |
27 | | ixi 8502 |
. . . . . . . . 9
⊢ (i
· i) = -1 |
28 | | 1re 7919 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ |
29 | 28 | renegcli 8181 |
. . . . . . . . 9
⊢ -1 ∈
ℝ |
30 | 27, 29 | eqeltri 2243 |
. . . . . . . 8
⊢ (i
· i) ∈ ℝ |
31 | | simpr 109 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈
ℝ) |
32 | 31, 31 | readdcld 7949 |
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℝ) |
33 | | remulcl 7902 |
. . . . . . . 8
⊢ (((i
· i) ∈ ℝ ∧ (𝑧 + 𝑧) ∈ ℝ) → ((i · i)
· (𝑧 + 𝑧)) ∈
ℝ) |
34 | 30, 32, 33 | sylancr 412 |
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i
· i) · (𝑧 +
𝑧)) ∈
ℝ) |
35 | 26, 34 | eqeltrd 2247 |
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· ((𝑦 + (i ·
𝑧)) − (𝑦 − (i · 𝑧)))) ∈
ℝ) |
36 | | oveq2 5861 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) + 𝑥) = ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧)))) |
37 | 36 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ)) |
38 | | oveq2 5861 |
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) − 𝑥) = ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) |
39 | 38 | oveq2d 5869 |
. . . . . . . . 9
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → (i · ((𝑦 + (i · 𝑧)) − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))))) |
40 | 39 | eleq1d 2239 |
. . . . . . . 8
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → ((i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) |
41 | 37, 40 | anbi12d 470 |
. . . . . . 7
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → ((((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ))) |
42 | 41 | rspcev 2834 |
. . . . . 6
⊢ (((𝑦 − (i · 𝑧)) ∈ ℂ ∧ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)) |
43 | 8, 15, 35, 42 | syl12anc 1231 |
. . . . 5
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) →
∃𝑥 ∈ ℂ
(((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)) |
44 | | oveq1 5860 |
. . . . . . . 8
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 + 𝑥) = ((𝑦 + (i · 𝑧)) + 𝑥)) |
45 | 44 | eleq1d 2239 |
. . . . . . 7
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → ((𝐴 + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ)) |
46 | | oveq1 5860 |
. . . . . . . . 9
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 − 𝑥) = ((𝑦 + (i · 𝑧)) − 𝑥)) |
47 | 46 | oveq2d 5869 |
. . . . . . . 8
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (i · (𝐴 − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − 𝑥))) |
48 | 47 | eleq1d 2239 |
. . . . . . 7
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → ((i · (𝐴 − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)) |
49 | 45, 48 | anbi12d 470 |
. . . . . 6
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))) |
50 | 49 | rexbidv 2471 |
. . . . 5
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))) |
51 | 43, 50 | syl5ibrcom 156 |
. . . 4
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) |
52 | 51 | rexlimivv 2593 |
. . 3
⊢
(∃𝑦 ∈
ℝ ∃𝑧 ∈
ℝ 𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
53 | 1, 52 | syl 14 |
. 2
⊢ (𝐴 ∈ ℂ →
∃𝑥 ∈ ℂ
((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |
54 | | an4 581 |
. . . 4
⊢ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) ↔ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴 − 𝑥)) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ))) |
55 | | resubcl 8183 |
. . . . . . 7
⊢ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ) |
56 | | pnpcan 8158 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥 − 𝑦)) |
57 | 56 | 3expb 1199 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥 − 𝑦)) |
58 | 57 | eleq1d 2239 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
(((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ ↔ (𝑥 − 𝑦) ∈ ℝ)) |
59 | 55, 58 | syl5ib 153 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
(((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ)) |
60 | | resubcl 8183 |
. . . . . . . 8
⊢ (((i
· (𝐴 − 𝑦)) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈ ℝ) → ((i
· (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥))) ∈ ℝ) |
61 | 60 | ancoms 266 |
. . . . . . 7
⊢ (((i
· (𝐴 − 𝑥)) ∈ ℝ ∧ (i
· (𝐴 − 𝑦)) ∈ ℝ) → ((i
· (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥))) ∈ ℝ) |
62 | 3 | a1i 9 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → i
∈ ℂ) |
63 | | subcl 8118 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 − 𝑦) ∈ ℂ) |
64 | 63 | adantrl 475 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴 − 𝑦) ∈ ℂ) |
65 | | subcl 8118 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 − 𝑥) ∈ ℂ) |
66 | 65 | adantrr 476 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴 − 𝑥) ∈ ℂ) |
67 | 62, 64, 66 | subdid 8333 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i
· ((𝐴 − 𝑦) − (𝐴 − 𝑥))) = ((i · (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥)))) |
68 | | nnncan1 8155 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 − 𝑦) − (𝐴 − 𝑥)) = (𝑥 − 𝑦)) |
69 | 68 | 3com23 1204 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 − 𝑦) − (𝐴 − 𝑥)) = (𝑥 − 𝑦)) |
70 | 69 | 3expb 1199 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 − 𝑦) − (𝐴 − 𝑥)) = (𝑥 − 𝑦)) |
71 | 70 | oveq2d 5869 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i
· ((𝐴 − 𝑦) − (𝐴 − 𝑥))) = (i · (𝑥 − 𝑦))) |
72 | 67, 71 | eqtr3d 2205 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((i
· (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥))) = (i · (𝑥 − 𝑦))) |
73 | 72 | eleq1d 2239 |
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i
· (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥))) ∈ ℝ ↔ (i · (𝑥 − 𝑦)) ∈ ℝ)) |
74 | 61, 73 | syl5ib 153 |
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i
· (𝐴 − 𝑥)) ∈ ℝ ∧ (i
· (𝐴 − 𝑦)) ∈ ℝ) → (i
· (𝑥 − 𝑦)) ∈
ℝ)) |
75 | 59, 74 | anim12d 333 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴 − 𝑥)) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → ((𝑥 − 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) |
76 | | rimul 8504 |
. . . . . 6
⊢ (((𝑥 − 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ) → (𝑥 − 𝑦) = 0) |
77 | 76 | a1i 9 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
(((𝑥 − 𝑦) ∈ ℝ ∧ (i
· (𝑥 − 𝑦)) ∈ ℝ) → (𝑥 − 𝑦) = 0)) |
78 | | subeq0 8145 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) |
79 | 78 | biimpd 143 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 → 𝑥 = 𝑦)) |
80 | 79 | adantl 275 |
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑥 − 𝑦) = 0 → 𝑥 = 𝑦)) |
81 | 75, 77, 80 | 3syld 57 |
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴 − 𝑥)) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)) |
82 | 54, 81 | syl5bi 151 |
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)) |
83 | 82 | ralrimivva 2552 |
. 2
⊢ (𝐴 ∈ ℂ →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℂ
((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)) |
84 | | oveq2 5861 |
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦)) |
85 | 84 | eleq1d 2239 |
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑦) ∈ ℝ)) |
86 | | oveq2 5861 |
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 − 𝑥) = (𝐴 − 𝑦)) |
87 | 86 | oveq2d 5869 |
. . . . 5
⊢ (𝑥 = 𝑦 → (i · (𝐴 − 𝑥)) = (i · (𝐴 − 𝑦))) |
88 | 87 | eleq1d 2239 |
. . . 4
⊢ (𝑥 = 𝑦 → ((i · (𝐴 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − 𝑦)) ∈ ℝ)) |
89 | 85, 88 | anbi12d 470 |
. . 3
⊢ (𝑥 = 𝑦 → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ))) |
90 | 89 | reu4 2924 |
. 2
⊢
(∃!𝑥 ∈
ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈ ℝ) ↔
(∃𝑥 ∈ ℂ
((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))) |
91 | 53, 83, 90 | sylanbrc 415 |
1
⊢ (𝐴 ∈ ℂ →
∃!𝑥 ∈ ℂ
((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |