ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cju GIF version

Theorem cju 8815
Description: The complex conjugate of a complex number is unique. (Contributed by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
cju (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Distinct variable group:   𝑥,𝐴

Proof of Theorem cju
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnre 7857 . . 3 (𝐴 ∈ ℂ → ∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)))
2 recn 7848 . . . . . . 7 (𝑦 ∈ ℝ → 𝑦 ∈ ℂ)
3 ax-icn 7810 . . . . . . . 8 i ∈ ℂ
4 recn 7848 . . . . . . . 8 (𝑧 ∈ ℝ → 𝑧 ∈ ℂ)
5 mulcl 7842 . . . . . . . 8 ((i ∈ ℂ ∧ 𝑧 ∈ ℂ) → (i · 𝑧) ∈ ℂ)
63, 4, 5sylancr 411 . . . . . . 7 (𝑧 ∈ ℝ → (i · 𝑧) ∈ ℂ)
7 subcl 8057 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (i · 𝑧) ∈ ℂ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
82, 6, 7syl2an 287 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 − (i · 𝑧)) ∈ ℂ)
92adantr 274 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈ ℂ)
106adantl 275 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · 𝑧) ∈ ℂ)
119, 10, 9ppncand 8209 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) = (𝑦 + 𝑦))
12 readdcl 7841 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1312anidms 395 . . . . . . . 8 (𝑦 ∈ ℝ → (𝑦 + 𝑦) ∈ ℝ)
1413adantr 274 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ)
1511, 14eqeltrd 2234 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ)
169, 10, 10pnncand 8208 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = ((i · 𝑧) + (i · 𝑧)))
173a1i 9 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → i ∈ ℂ)
184adantl 275 . . . . . . . . . . 11 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℂ)
1917, 18, 18adddid 7885 . . . . . . . . . 10 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · (𝑧 + 𝑧)) = ((i · 𝑧) + (i · 𝑧)))
2016, 19eqtr4d 2193 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = (i · (𝑧 + 𝑧)))
2120oveq2d 5834 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = (i · (i · (𝑧 + 𝑧))))
2218, 18addcld 7880 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℂ)
23 mulass 7846 . . . . . . . . . 10 ((i ∈ ℂ ∧ i ∈ ℂ ∧ (𝑧 + 𝑧) ∈ ℂ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
243, 3, 23mp3an12 1309 . . . . . . . . 9 ((𝑧 + 𝑧) ∈ ℂ → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
2522, 24syl 14 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) = (i · (i · (𝑧 + 𝑧))))
2621, 25eqtr4d 2193 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) = ((i · i) · (𝑧 + 𝑧)))
27 ixi 8441 . . . . . . . . 9 (i · i) = -1
28 1re 7860 . . . . . . . . . 10 1 ∈ ℝ
2928renegcli 8120 . . . . . . . . 9 -1 ∈ ℝ
3027, 29eqeltri 2230 . . . . . . . 8 (i · i) ∈ ℝ
31 simpr 109 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈ ℝ)
3231, 31readdcld 7890 . . . . . . . 8 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℝ)
33 remulcl 7843 . . . . . . . 8 (((i · i) ∈ ℝ ∧ (𝑧 + 𝑧) ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3430, 32, 33sylancr 411 . . . . . . 7 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i · i) · (𝑧 + 𝑧)) ∈ ℝ)
3526, 34eqeltrd 2234 . . . . . 6 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)
36 oveq2 5826 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) + 𝑥) = ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))))
3736eleq1d 2226 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ))
38 oveq2 5826 . . . . . . . . . 10 (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) − 𝑥) = ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))))
3938oveq2d 5834 . . . . . . . . 9 (𝑥 = (𝑦 − (i · 𝑧)) → (i · ((𝑦 + (i · 𝑧)) − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))))
4039eleq1d 2226 . . . . . . . 8 (𝑥 = (𝑦 − (i · 𝑧)) → ((i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ))
4137, 40anbi12d 465 . . . . . . 7 (𝑥 = (𝑦 − (i · 𝑧)) → ((((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)))
4241rspcev 2816 . . . . . 6 (((𝑦 − (i · 𝑧)) ∈ ℂ ∧ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
438, 15, 35, 42syl12anc 1218 . . . . 5 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
44 oveq1 5825 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 + 𝑥) = ((𝑦 + (i · 𝑧)) + 𝑥))
4544eleq1d 2226 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((𝐴 + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ))
46 oveq1 5825 . . . . . . . . 9 (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴𝑥) = ((𝑦 + (i · 𝑧)) − 𝑥))
4746oveq2d 5834 . . . . . . . 8 (𝐴 = (𝑦 + (i · 𝑧)) → (i · (𝐴𝑥)) = (i · ((𝑦 + (i · 𝑧)) − 𝑥)))
4847eleq1d 2226 . . . . . . 7 (𝐴 = (𝑦 + (i · 𝑧)) → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))
4945, 48anbi12d 465 . . . . . 6 (𝐴 = (𝑦 + (i · 𝑧)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
5049rexbidv 2458 . . . . 5 (𝐴 = (𝑦 + (i · 𝑧)) → (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)))
5143, 50syl5ibrcom 156 . . . 4 ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ)))
5251rexlimivv 2580 . . 3 (∃𝑦 ∈ ℝ ∃𝑧 ∈ ℝ 𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
531, 52syl 14 . 2 (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
54 an4 576 . . . 4 ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) ↔ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
55 resubcl 8122 . . . . . . 7 (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ)
56 pnpcan 8097 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
57563expb 1186 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥𝑦))
5857eleq1d 2226 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ ↔ (𝑥𝑦) ∈ ℝ))
5955, 58syl5ib 153 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → (𝑥𝑦) ∈ ℝ))
60 resubcl 8122 . . . . . . . 8 (((i · (𝐴𝑦)) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
6160ancoms 266 . . . . . . 7 (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ)
623a1i 9 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → i ∈ ℂ)
63 subcl 8057 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴𝑦) ∈ ℂ)
6463adantrl 470 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑦) ∈ ℂ)
65 subcl 8057 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴𝑥) ∈ ℂ)
6665adantrr 471 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴𝑥) ∈ ℂ)
6762, 64, 66subdid 8272 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = ((i · (𝐴𝑦)) − (i · (𝐴𝑥))))
68 nnncan1 8094 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
69683com23 1191 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
70693expb 1186 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴𝑦) − (𝐴𝑥)) = (𝑥𝑦))
7170oveq2d 5834 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i · ((𝐴𝑦) − (𝐴𝑥))) = (i · (𝑥𝑦)))
7267, 71eqtr3d 2192 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((i · (𝐴𝑦)) − (i · (𝐴𝑥))) = (i · (𝑥𝑦)))
7372eleq1d 2226 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑦)) − (i · (𝐴𝑥))) ∈ ℝ ↔ (i · (𝑥𝑦)) ∈ ℝ))
7461, 73syl5ib 153 . . . . . 6 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ) → (i · (𝑥𝑦)) ∈ ℝ))
7559, 74anim12d 333 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → ((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ)))
76 rimul 8443 . . . . . 6 (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0)
7776a1i 9 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((𝑥𝑦) ∈ ℝ ∧ (i · (𝑥𝑦)) ∈ ℝ) → (𝑥𝑦) = 0))
78 subeq0 8084 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 ↔ 𝑥 = 𝑦))
7978biimpd 143 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
8079adantl 275 . . . . 5 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑥𝑦) = 0 → 𝑥 = 𝑦))
8175, 77, 803syld 57 . . . 4 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴𝑥)) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8254, 81syl5bi 151 . . 3 ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
8382ralrimivva 2539 . 2 (𝐴 ∈ ℂ → ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))
84 oveq2 5826 . . . . 5 (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦))
8584eleq1d 2226 . . . 4 (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑦) ∈ ℝ))
86 oveq2 5826 . . . . . 6 (𝑥 = 𝑦 → (𝐴𝑥) = (𝐴𝑦))
8786oveq2d 5834 . . . . 5 (𝑥 = 𝑦 → (i · (𝐴𝑥)) = (i · (𝐴𝑦)))
8887eleq1d 2226 . . . 4 (𝑥 = 𝑦 → ((i · (𝐴𝑥)) ∈ ℝ ↔ (i · (𝐴𝑦)) ∈ ℝ))
8985, 88anbi12d 465 . . 3 (𝑥 = 𝑦 → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)))
9089reu4 2906 . 2 (∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ↔ (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)))
9153, 83, 90sylanbrc 414 1 (𝐴 ∈ ℂ → ∃!𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴𝑥)) ∈ ℝ))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1335  wcel 2128  wral 2435  wrex 2436  ∃!wreu 2437  (class class class)co 5818  cc 7713  cr 7714  0cc0 7715  1c1 7716  ici 7717   + caddc 7718   · cmul 7720  cmin 8029  -cneg 8030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806  ax-resscn 7807  ax-1cn 7808  ax-1re 7809  ax-icn 7810  ax-addcl 7811  ax-addrcl 7812  ax-mulcl 7813  ax-mulrcl 7814  ax-addcom 7815  ax-mulcom 7816  ax-addass 7817  ax-mulass 7818  ax-distr 7819  ax-i2m1 7820  ax-0lt1 7821  ax-1rid 7822  ax-0id 7823  ax-rnegex 7824  ax-precex 7825  ax-cnre 7826  ax-pre-ltirr 7827  ax-pre-lttrn 7829  ax-pre-apti 7830  ax-pre-ltadd 7831  ax-pre-mulgt0 7832
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-riota 5774  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pnf 7897  df-mnf 7898  df-ltxr 7900  df-sub 8031  df-neg 8032  df-reap 8433
This theorem is referenced by:  cjval  10727  cjth  10728  cjf  10729  remim  10742
  Copyright terms: Public domain W3C validator