| Step | Hyp | Ref
 | Expression | 
| 1 |   | cnre 8022 | 
. . 3
⊢ (𝐴 ∈ ℂ →
∃𝑦 ∈ ℝ
∃𝑧 ∈ ℝ
𝐴 = (𝑦 + (i · 𝑧))) | 
| 2 |   | recn 8012 | 
. . . . . . 7
⊢ (𝑦 ∈ ℝ → 𝑦 ∈
ℂ) | 
| 3 |   | ax-icn 7974 | 
. . . . . . . 8
⊢ i ∈
ℂ | 
| 4 |   | recn 8012 | 
. . . . . . . 8
⊢ (𝑧 ∈ ℝ → 𝑧 ∈
ℂ) | 
| 5 |   | mulcl 8006 | 
. . . . . . . 8
⊢ ((i
∈ ℂ ∧ 𝑧
∈ ℂ) → (i · 𝑧) ∈ ℂ) | 
| 6 | 3, 4, 5 | sylancr 414 | 
. . . . . . 7
⊢ (𝑧 ∈ ℝ → (i
· 𝑧) ∈
ℂ) | 
| 7 |   | subcl 8225 | 
. . . . . . 7
⊢ ((𝑦 ∈ ℂ ∧ (i
· 𝑧) ∈ ℂ)
→ (𝑦 − (i
· 𝑧)) ∈
ℂ) | 
| 8 | 2, 6, 7 | syl2an 289 | 
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 − (i · 𝑧)) ∈
ℂ) | 
| 9 | 2 | adantr 276 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑦 ∈
ℂ) | 
| 10 | 6 | adantl 277 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· 𝑧) ∈
ℂ) | 
| 11 | 9, 10, 9 | ppncand 8377 | 
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) = (𝑦 + 𝑦)) | 
| 12 |   | readdcl 8005 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ) | 
| 13 | 12 | anidms 397 | 
. . . . . . . 8
⊢ (𝑦 ∈ ℝ → (𝑦 + 𝑦) ∈ ℝ) | 
| 14 | 13 | adantr 276 | 
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑦 + 𝑦) ∈ ℝ) | 
| 15 | 11, 14 | eqeltrd 2273 | 
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ) | 
| 16 | 9, 10, 10 | pnncand 8376 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = ((i · 𝑧) + (i · 𝑧))) | 
| 17 | 3 | a1i 9 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → i ∈
ℂ) | 
| 18 | 4 | adantl 277 | 
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈
ℂ) | 
| 19 | 17, 18, 18 | adddid 8051 | 
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· (𝑧 + 𝑧)) = ((i · 𝑧) + (i · 𝑧))) | 
| 20 | 16, 19 | eqtr4d 2232 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))) = (i · (𝑧 + 𝑧))) | 
| 21 | 20 | oveq2d 5938 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· ((𝑦 + (i ·
𝑧)) − (𝑦 − (i · 𝑧)))) = (i · (i ·
(𝑧 + 𝑧)))) | 
| 22 | 18, 18 | addcld 8046 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℂ) | 
| 23 |   | mulass 8010 | 
. . . . . . . . . 10
⊢ ((i
∈ ℂ ∧ i ∈ ℂ ∧ (𝑧 + 𝑧) ∈ ℂ) → ((i · i)
· (𝑧 + 𝑧)) = (i · (i ·
(𝑧 + 𝑧)))) | 
| 24 | 3, 3, 23 | mp3an12 1338 | 
. . . . . . . . 9
⊢ ((𝑧 + 𝑧) ∈ ℂ → ((i · i)
· (𝑧 + 𝑧)) = (i · (i ·
(𝑧 + 𝑧)))) | 
| 25 | 22, 24 | syl 14 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i
· i) · (𝑧 +
𝑧)) = (i · (i
· (𝑧 + 𝑧)))) | 
| 26 | 21, 25 | eqtr4d 2232 | 
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· ((𝑦 + (i ·
𝑧)) − (𝑦 − (i · 𝑧)))) = ((i · i) ·
(𝑧 + 𝑧))) | 
| 27 |   | ixi 8610 | 
. . . . . . . . 9
⊢ (i
· i) = -1 | 
| 28 |   | 1re 8025 | 
. . . . . . . . . 10
⊢ 1 ∈
ℝ | 
| 29 | 28 | renegcli 8288 | 
. . . . . . . . 9
⊢ -1 ∈
ℝ | 
| 30 | 27, 29 | eqeltri 2269 | 
. . . . . . . 8
⊢ (i
· i) ∈ ℝ | 
| 31 |   | simpr 110 | 
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → 𝑧 ∈
ℝ) | 
| 32 | 31, 31 | readdcld 8056 | 
. . . . . . . 8
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝑧 + 𝑧) ∈ ℝ) | 
| 33 |   | remulcl 8007 | 
. . . . . . . 8
⊢ (((i
· i) ∈ ℝ ∧ (𝑧 + 𝑧) ∈ ℝ) → ((i · i)
· (𝑧 + 𝑧)) ∈
ℝ) | 
| 34 | 30, 32, 33 | sylancr 414 | 
. . . . . . 7
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((i
· i) · (𝑧 +
𝑧)) ∈
ℝ) | 
| 35 | 26, 34 | eqeltrd 2273 | 
. . . . . 6
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (i
· ((𝑦 + (i ·
𝑧)) − (𝑦 − (i · 𝑧)))) ∈
ℝ) | 
| 36 |   | oveq2 5930 | 
. . . . . . . . 9
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) + 𝑥) = ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧)))) | 
| 37 | 36 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ)) | 
| 38 |   | oveq2 5930 | 
. . . . . . . . . 10
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → ((𝑦 + (i · 𝑧)) − 𝑥) = ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) | 
| 39 | 38 | oveq2d 5938 | 
. . . . . . . . 9
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → (i · ((𝑦 + (i · 𝑧)) − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧))))) | 
| 40 | 39 | eleq1d 2265 | 
. . . . . . . 8
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → ((i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) | 
| 41 | 37, 40 | anbi12d 473 | 
. . . . . . 7
⊢ (𝑥 = (𝑦 − (i · 𝑧)) → ((((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ))) | 
| 42 | 41 | rspcev 2868 | 
. . . . . 6
⊢ (((𝑦 − (i · 𝑧)) ∈ ℂ ∧ (((𝑦 + (i · 𝑧)) + (𝑦 − (i · 𝑧))) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − (𝑦 − (i · 𝑧)))) ∈ ℝ)) → ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)) | 
| 43 | 8, 15, 35, 42 | syl12anc 1247 | 
. . . . 5
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) →
∃𝑥 ∈ ℂ
(((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)) | 
| 44 |   | oveq1 5929 | 
. . . . . . . 8
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 + 𝑥) = ((𝑦 + (i · 𝑧)) + 𝑥)) | 
| 45 | 44 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → ((𝐴 + 𝑥) ∈ ℝ ↔ ((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ)) | 
| 46 |   | oveq1 5929 | 
. . . . . . . . 9
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (𝐴 − 𝑥) = ((𝑦 + (i · 𝑧)) − 𝑥)) | 
| 47 | 46 | oveq2d 5938 | 
. . . . . . . 8
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (i · (𝐴 − 𝑥)) = (i · ((𝑦 + (i · 𝑧)) − 𝑥))) | 
| 48 | 47 | eleq1d 2265 | 
. . . . . . 7
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → ((i · (𝐴 − 𝑥)) ∈ ℝ ↔ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ)) | 
| 49 | 45, 48 | anbi12d 473 | 
. . . . . 6
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))) | 
| 50 | 49 | rexbidv 2498 | 
. . . . 5
⊢ (𝐴 = (𝑦 + (i · 𝑧)) → (∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ∃𝑥 ∈ ℂ (((𝑦 + (i · 𝑧)) + 𝑥) ∈ ℝ ∧ (i · ((𝑦 + (i · 𝑧)) − 𝑥)) ∈ ℝ))) | 
| 51 | 43, 50 | syl5ibrcom 157 | 
. . . 4
⊢ ((𝑦 ∈ ℝ ∧ 𝑧 ∈ ℝ) → (𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ))) | 
| 52 | 51 | rexlimivv 2620 | 
. . 3
⊢
(∃𝑦 ∈
ℝ ∃𝑧 ∈
ℝ 𝐴 = (𝑦 + (i · 𝑧)) → ∃𝑥 ∈ ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | 
| 53 | 1, 52 | syl 14 | 
. 2
⊢ (𝐴 ∈ ℂ →
∃𝑥 ∈ ℂ
((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) | 
| 54 |   | an4 586 | 
. . . 4
⊢ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) ↔ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴 − 𝑥)) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ))) | 
| 55 |   | resubcl 8290 | 
. . . . . . 7
⊢ (((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ) | 
| 56 |   | pnpcan 8265 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥 − 𝑦)) | 
| 57 | 56 | 3expb 1206 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 + 𝑥) − (𝐴 + 𝑦)) = (𝑥 − 𝑦)) | 
| 58 | 57 | eleq1d 2265 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
(((𝐴 + 𝑥) − (𝐴 + 𝑦)) ∈ ℝ ↔ (𝑥 − 𝑦) ∈ ℝ)) | 
| 59 | 55, 58 | imbitrid 154 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
(((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) → (𝑥 − 𝑦) ∈ ℝ)) | 
| 60 |   | resubcl 8290 | 
. . . . . . . 8
⊢ (((i
· (𝐴 − 𝑦)) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈ ℝ) → ((i
· (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥))) ∈ ℝ) | 
| 61 | 60 | ancoms 268 | 
. . . . . . 7
⊢ (((i
· (𝐴 − 𝑥)) ∈ ℝ ∧ (i
· (𝐴 − 𝑦)) ∈ ℝ) → ((i
· (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥))) ∈ ℝ) | 
| 62 | 3 | a1i 9 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → i
∈ ℂ) | 
| 63 |   | subcl 8225 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝐴 − 𝑦) ∈ ℂ) | 
| 64 | 63 | adantrl 478 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴 − 𝑦) ∈ ℂ) | 
| 65 |   | subcl 8225 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝐴 − 𝑥) ∈ ℂ) | 
| 66 | 65 | adantrr 479 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝐴 − 𝑥) ∈ ℂ) | 
| 67 | 62, 64, 66 | subdid 8440 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i
· ((𝐴 − 𝑦) − (𝐴 − 𝑥))) = ((i · (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥)))) | 
| 68 |   | nnncan1 8262 | 
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑥 ∈ ℂ) → ((𝐴 − 𝑦) − (𝐴 − 𝑥)) = (𝑥 − 𝑦)) | 
| 69 | 68 | 3com23 1211 | 
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝐴 − 𝑦) − (𝐴 − 𝑥)) = (𝑥 − 𝑦)) | 
| 70 | 69 | 3expb 1206 | 
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝐴 − 𝑦) − (𝐴 − 𝑥)) = (𝑥 − 𝑦)) | 
| 71 | 70 | oveq2d 5938 | 
. . . . . . . . 9
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (i
· ((𝐴 − 𝑦) − (𝐴 − 𝑥))) = (i · (𝑥 − 𝑦))) | 
| 72 | 67, 71 | eqtr3d 2231 | 
. . . . . . . 8
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((i
· (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥))) = (i · (𝑥 − 𝑦))) | 
| 73 | 72 | eleq1d 2265 | 
. . . . . . 7
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i
· (𝐴 − 𝑦)) − (i · (𝐴 − 𝑥))) ∈ ℝ ↔ (i · (𝑥 − 𝑦)) ∈ ℝ)) | 
| 74 | 61, 73 | imbitrid 154 | 
. . . . . 6
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (((i
· (𝐴 − 𝑥)) ∈ ℝ ∧ (i
· (𝐴 − 𝑦)) ∈ ℝ) → (i
· (𝑥 − 𝑦)) ∈
ℝ)) | 
| 75 | 59, 74 | anim12d 335 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴 − 𝑥)) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → ((𝑥 − 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ))) | 
| 76 |   | rimul 8612 | 
. . . . . 6
⊢ (((𝑥 − 𝑦) ∈ ℝ ∧ (i · (𝑥 − 𝑦)) ∈ ℝ) → (𝑥 − 𝑦) = 0) | 
| 77 | 76 | a1i 9 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
(((𝑥 − 𝑦) ∈ ℝ ∧ (i
· (𝑥 − 𝑦)) ∈ ℝ) → (𝑥 − 𝑦) = 0)) | 
| 78 |   | subeq0 8252 | 
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 ↔ 𝑥 = 𝑦)) | 
| 79 | 78 | biimpd 144 | 
. . . . . 6
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((𝑥 − 𝑦) = 0 → 𝑥 = 𝑦)) | 
| 80 | 79 | adantl 277 | 
. . . . 5
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → ((𝑥 − 𝑦) = 0 → 𝑥 = 𝑦)) | 
| 81 | 75, 77, 80 | 3syld 57 | 
. . . 4
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
((((𝐴 + 𝑥) ∈ ℝ ∧ (𝐴 + 𝑦) ∈ ℝ) ∧ ((i · (𝐴 − 𝑥)) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)) | 
| 82 | 54, 81 | biimtrid 152 | 
. . 3
⊢ ((𝐴 ∈ ℂ ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) →
((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)) | 
| 83 | 82 | ralrimivva 2579 | 
. 2
⊢ (𝐴 ∈ ℂ →
∀𝑥 ∈ ℂ
∀𝑦 ∈ ℂ
((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → 𝑥 = 𝑦)) | 
| 84 |   | oveq2 5930 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (𝐴 + 𝑥) = (𝐴 + 𝑦)) | 
| 85 | 84 | eleq1d 2265 | 
. . . 4
⊢ (𝑥 = 𝑦 → ((𝐴 + 𝑥) ∈ ℝ ↔ (𝐴 + 𝑦) ∈ ℝ)) | 
| 86 |   | oveq2 5930 | 
. . . . . 6
⊢ (𝑥 = 𝑦 → (𝐴 − 𝑥) = (𝐴 − 𝑦)) | 
| 87 | 86 | oveq2d 5938 | 
. . . . 5
⊢ (𝑥 = 𝑦 → (i · (𝐴 − 𝑥)) = (i · (𝐴 − 𝑦))) | 
| 88 | 87 | eleq1d 2265 | 
. . . 4
⊢ (𝑥 = 𝑦 → ((i · (𝐴 − 𝑥)) ∈ ℝ ↔ (i · (𝐴 − 𝑦)) ∈ ℝ)) | 
| 89 | 85, 88 | anbi12d 473 | 
. . 3
⊢ (𝑥 = 𝑦 → (((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ↔ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ))) | 
| 90 | 89 | reu4 2958 | 
. 2
⊢
(∃!𝑥 ∈
ℂ ((𝐴 + 𝑥) ∈ ℝ ∧ (i
· (𝐴 − 𝑥)) ∈ ℝ) ↔
(∃𝑥 ∈ ℂ
((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ ℂ ((((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ) ∧ ((𝐴 + 𝑦) ∈ ℝ ∧ (i · (𝐴 − 𝑦)) ∈ ℝ)) → 𝑥 = 𝑦))) | 
| 91 | 53, 83, 90 | sylanbrc 417 | 
1
⊢ (𝐴 ∈ ℂ →
∃!𝑥 ∈ ℂ
((𝐴 + 𝑥) ∈ ℝ ∧ (i · (𝐴 − 𝑥)) ∈ ℝ)) |