ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcn2 GIF version

Theorem mulcn2 11202
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
mulcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem mulcn2
StepHypRef Expression
1 rphalfcl 9581 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
213ad2ant1 1003 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 / 2) ∈ ℝ+)
3 abscl 10944 . . . . . 6 (𝐶 ∈ ℂ → (abs‘𝐶) ∈ ℝ)
433ad2ant3 1005 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐶) ∈ ℝ)
5 abscl 10944 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
653ad2ant2 1004 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
7 1re 7871 . . . . . . . . 9 1 ∈ ℝ
8 readdcl 7852 . . . . . . . . 9 (((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐵) + 1) ∈ ℝ)
96, 7, 8sylancl 410 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ)
10 absge0 10953 . . . . . . . . . 10 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
11 0lt1 7996 . . . . . . . . . . 11 0 < 1
12 addgegt0 8318 . . . . . . . . . . . 12 ((((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (abs‘𝐵) ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
1312an4s 578 . . . . . . . . . . 11 ((((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
147, 11, 13mpanr12 436 . . . . . . . . . 10 (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) → 0 < ((abs‘𝐵) + 1))
155, 10, 14syl2anc 409 . . . . . . . . 9 (𝐵 ∈ ℂ → 0 < ((abs‘𝐵) + 1))
16153ad2ant2 1004 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐵) + 1))
179, 16elrpd 9593 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ+)
182, 17rpdivcld 9614 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+)
1918rpred 9596 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
204, 19readdcld 7901 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
21 absge0 10953 . . . . . 6 (𝐶 ∈ ℂ → 0 ≤ (abs‘𝐶))
22213ad2ant3 1005 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 ≤ (abs‘𝐶))
23 elrp 9555 . . . . . 6 (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ↔ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
24 addgegt0 8318 . . . . . . 7 ((((abs‘𝐶) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) ∧ (0 ≤ (abs‘𝐶) ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2524an4s 578 . . . . . 6 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2623, 25sylan2b 285 . . . . 5 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
274, 22, 18, 26syl21anc 1219 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2820, 27elrpd 9593 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
292, 28rpdivcld 9614 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+)
30 simprl 521 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
31 simpl2 986 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐵 ∈ ℂ)
3230, 31subcld 8180 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝐵) ∈ ℂ)
3332abscld 11074 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝐵)) ∈ ℝ)
342adantr 274 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ+)
3534rpred 9596 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ)
3628adantr 274 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
3733, 35, 36ltmuldivd 9644 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
38 simprr 522 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
39 simpl3 987 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
4038, 39abs2difd 11090 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)))
4138abscld 11074 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝑣) ∈ ℝ)
424adantr 274 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐶) ∈ ℝ)
4341, 42resubcld 8250 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ)
4438, 39subcld 8180 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝐶) ∈ ℂ)
4544abscld 11074 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝐶)) ∈ ℝ)
4619adantr 274 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
47 lelttr 7959 . . . . . . . . . . . . . 14 ((((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ ∧ (abs‘(𝑣𝐶)) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4843, 45, 46, 47syl3anc 1220 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4940, 48mpand 426 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
5041, 42, 46ltsubadd2d 8412 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) ↔ (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5149, 50sylibd 148 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5220adantr 274 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
53 ltle 7958 . . . . . . . . . . . 12 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5441, 52, 53syl2anc 409 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5551, 54syld 45 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5632absge0d 11077 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 0 ≤ (abs‘(𝑢𝐵)))
57 lemul2a 8724 . . . . . . . . . . . 12 ((((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) ∧ (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5857ex 114 . . . . . . . . . . 11 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
5941, 52, 33, 56, 58syl112anc 1224 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
6033, 41remulcld 7902 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ)
6133, 52remulcld 7902 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ)
62 lelttr 7959 . . . . . . . . . . . 12 ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6360, 61, 35, 62syl3anc 1220 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6463expd 256 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6555, 59, 643syld 57 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6665com23 78 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6737, 66sylbird 169 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6867impd 252 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6932, 38absmuld 11087 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = ((abs‘(𝑢𝐵)) · (abs‘𝑣)))
7030, 31, 38subdird 8284 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑢𝐵) · 𝑣) = ((𝑢 · 𝑣) − (𝐵 · 𝑣)))
7170fveq2d 5471 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7269, 71eqtr3d 2192 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7372breq1d 3975 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2) ↔ (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7468, 73sylibd 148 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7517adantr 274 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ+)
7645, 35, 75ltmuldiv2d 9645 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
7731, 38, 39subdid 8283 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · (𝑣𝐶)) = ((𝐵 · 𝑣) − (𝐵 · 𝐶)))
7877fveq2d 5471 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))))
7931, 44absmuld 11087 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8078, 79eqtr3d 2192 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8131abscld 11074 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ∈ ℝ)
8281lep1d 8796 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ≤ ((abs‘𝐵) + 1))
839adantr 274 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ)
84 abscl 10944 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → (abs‘(𝑣𝐶)) ∈ ℝ)
85 absge0 10953 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → 0 ≤ (abs‘(𝑣𝐶)))
8684, 85jca 304 . . . . . . . . . . . 12 ((𝑣𝐶) ∈ ℂ → ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶))))
87 lemul1a 8723 . . . . . . . . . . . . 13 ((((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) ∧ (abs‘𝐵) ≤ ((abs‘𝐵) + 1)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
8887ex 114 . . . . . . . . . . . 12 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
8986, 88syl3an3 1255 . . . . . . . . . . 11 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ (𝑣𝐶) ∈ ℂ) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9081, 83, 44, 89syl3anc 1220 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9182, 90mpd 13 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9280, 91eqbrtrd 3986 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9331, 38mulcld 7892 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝑣) ∈ ℂ)
9431, 39mulcld 7892 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
9593, 94subcld 8180 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐵 · 𝑣) − (𝐵 · 𝐶)) ∈ ℂ)
9695abscld 11074 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ)
9783, 45remulcld 7902 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ)
98 lelttr 7959 . . . . . . . . 9 (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
9996, 97, 35, 98syl3anc 1220 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10092, 99mpand 426 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10176, 100sylbird 169 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
102101adantld 276 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10374, 102jcad 305 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2))))
104 mulcl 7853 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
105104adantl 275 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
106 simpl1 985 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ+)
107106rpred 9596 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ)
108 abs3lem 11004 . . . . 5 ((((𝑢 · 𝑣) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) ∧ ((𝐵 · 𝑣) ∈ ℂ ∧ 𝐴 ∈ ℝ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
109105, 94, 93, 107, 108syl22anc 1221 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
110103, 109syld 45 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
111110ralrimivva 2539 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
112 breq2 3969 . . . . . 6 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) < 𝑦 ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
113112anbi1d 461 . . . . 5 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧)))
114113imbi1d 230 . . . 4 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1151142ralbidv 2481 . . 3 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
116 breq2 3969 . . . . . 6 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑣𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
117116anbi2d 460 . . . . 5 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
118117imbi1d 230 . . . 4 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1191182ralbidv 2481 . . 3 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
120115, 119rspc2ev 2831 . 2 ((((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
12129, 18, 111, 120syl3anc 1220 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  w3a 963   = wceq 1335  wcel 2128  wral 2435  wrex 2436   class class class wbr 3965  cfv 5169  (class class class)co 5821  cc 7724  cr 7725  0cc0 7726  1c1 7727   + caddc 7729   · cmul 7731   < clt 7906  cle 7907  cmin 8040   / cdiv 8539  2c2 8878  +crp 9553  abscabs 10890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-mulrcl 7825  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-precex 7836  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842  ax-pre-mulgt0 7843  ax-pre-mulext 7844  ax-arch 7845  ax-caucvg 7846
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-po 4256  df-iso 4257  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-frec 6335  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-reap 8444  df-ap 8451  df-div 8540  df-inn 8828  df-2 8886  df-3 8887  df-4 8888  df-n0 9085  df-z 9162  df-uz 9434  df-rp 9554  df-seqfrec 10338  df-exp 10412  df-cj 10735  df-re 10736  df-im 10737  df-rsqrt 10891  df-abs 10892
This theorem is referenced by:  climmul  11217  mulcncntop  12925  mulc1cncf  12947  mulcncf  12962
  Copyright terms: Public domain W3C validator