ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mulcn2 GIF version

Theorem mulcn2 11304
Description: Complex number multiplication is a continuous function. Part of Proposition 14-4.16 of [Gleason] p. 243. (Contributed by Mario Carneiro, 31-Jan-2014.)
Assertion
Ref Expression
mulcn2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Distinct variable groups:   𝑣,𝑢,𝑦,𝑧,𝐴   𝑢,𝐵,𝑣,𝑦,𝑧   𝑢,𝐶,𝑣,𝑦,𝑧

Proof of Theorem mulcn2
StepHypRef Expression
1 rphalfcl 9668 . . . 4 (𝐴 ∈ ℝ+ → (𝐴 / 2) ∈ ℝ+)
213ad2ant1 1018 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 / 2) ∈ ℝ+)
3 abscl 11044 . . . . . 6 (𝐶 ∈ ℂ → (abs‘𝐶) ∈ ℝ)
433ad2ant3 1020 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐶) ∈ ℝ)
5 abscl 11044 . . . . . . . . . 10 (𝐵 ∈ ℂ → (abs‘𝐵) ∈ ℝ)
653ad2ant2 1019 . . . . . . . . 9 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (abs‘𝐵) ∈ ℝ)
7 1re 7947 . . . . . . . . 9 1 ∈ ℝ
8 readdcl 7928 . . . . . . . . 9 (((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘𝐵) + 1) ∈ ℝ)
96, 7, 8sylancl 413 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ)
10 absge0 11053 . . . . . . . . . 10 (𝐵 ∈ ℂ → 0 ≤ (abs‘𝐵))
11 0lt1 8074 . . . . . . . . . . 11 0 < 1
12 addgegt0 8396 . . . . . . . . . . . 12 ((((abs‘𝐵) ∈ ℝ ∧ 1 ∈ ℝ) ∧ (0 ≤ (abs‘𝐵) ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
1312an4s 588 . . . . . . . . . . 11 ((((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) ∧ (1 ∈ ℝ ∧ 0 < 1)) → 0 < ((abs‘𝐵) + 1))
147, 11, 13mpanr12 439 . . . . . . . . . 10 (((abs‘𝐵) ∈ ℝ ∧ 0 ≤ (abs‘𝐵)) → 0 < ((abs‘𝐵) + 1))
155, 10, 14syl2anc 411 . . . . . . . . 9 (𝐵 ∈ ℂ → 0 < ((abs‘𝐵) + 1))
16153ad2ant2 1019 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐵) + 1))
179, 16elrpd 9680 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐵) + 1) ∈ ℝ+)
182, 17rpdivcld 9701 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+)
1918rpred 9683 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
204, 19readdcld 7977 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
21 absge0 11053 . . . . . 6 (𝐶 ∈ ℂ → 0 ≤ (abs‘𝐶))
22213ad2ant3 1020 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 ≤ (abs‘𝐶))
23 elrp 9642 . . . . . 6 (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ↔ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
24 addgegt0 8396 . . . . . . 7 ((((abs‘𝐶) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) ∧ (0 ≤ (abs‘𝐶) ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2524an4s 588 . . . . . 6 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ (((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ ∧ 0 < ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2623, 25sylan2b 287 . . . . 5 ((((abs‘𝐶) ∈ ℝ ∧ 0 ≤ (abs‘𝐶)) ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
274, 22, 18, 26syl21anc 1237 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → 0 < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))
2820, 27elrpd 9680 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
292, 28rpdivcld 9701 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+)
30 simprl 529 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑢 ∈ ℂ)
31 simpl2 1001 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐵 ∈ ℂ)
3230, 31subcld 8258 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢𝐵) ∈ ℂ)
3332abscld 11174 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑢𝐵)) ∈ ℝ)
342adantr 276 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ+)
3534rpred 9683 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐴 / 2) ∈ ℝ)
3628adantr 276 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ+)
3733, 35, 36ltmuldivd 9731 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
38 simprr 531 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝑣 ∈ ℂ)
39 simpl3 1002 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐶 ∈ ℂ)
4038, 39abs2difd 11190 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)))
4138abscld 11174 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝑣) ∈ ℝ)
424adantr 276 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐶) ∈ ℝ)
4341, 42resubcld 8328 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ)
4438, 39subcld 8258 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑣𝐶) ∈ ℂ)
4544abscld 11174 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝑣𝐶)) ∈ ℝ)
4619adantr 276 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ)
47 lelttr 8036 . . . . . . . . . . . . . 14 ((((abs‘𝑣) − (abs‘𝐶)) ∈ ℝ ∧ (abs‘(𝑣𝐶)) ∈ ℝ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4843, 45, 46, 47syl3anc 1238 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝑣) − (abs‘𝐶)) ≤ (abs‘(𝑣𝐶)) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
4940, 48mpand 429 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
5041, 42, 46ltsubadd2d 8490 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝑣) − (abs‘𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) ↔ (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5149, 50sylibd 149 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5220adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ)
53 ltle 8035 . . . . . . . . . . . 12 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5441, 52, 53syl2anc 411 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) < ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5551, 54syld 45 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5632absge0d 11177 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 0 ≤ (abs‘(𝑢𝐵)))
57 lemul2a 8805 . . . . . . . . . . . 12 ((((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) ∧ (abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
5857ex 115 . . . . . . . . . . 11 (((abs‘𝑣) ∈ ℝ ∧ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑢𝐵)))) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
5941, 52, 33, 56, 58syl112anc 1242 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝑣) ≤ ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
6033, 41remulcld 7978 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ)
6133, 52remulcld 7978 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ)
62 lelttr 8036 . . . . . . . . . . . 12 ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ∈ ℝ ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6360, 61, 35, 62syl3anc 1238 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6463expd 258 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) ≤ ((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6555, 59, 643syld 57 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6665com23 78 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) < (𝐴 / 2) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6737, 66sylbird 170 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2))))
6867impd 254 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2)))
6932, 38absmuld 11187 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = ((abs‘(𝑢𝐵)) · (abs‘𝑣)))
7030, 31, 38subdird 8362 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝑢𝐵) · 𝑣) = ((𝑢 · 𝑣) − (𝐵 · 𝑣)))
7170fveq2d 5515 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝑢𝐵) · 𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7269, 71eqtr3d 2212 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑢𝐵)) · (abs‘𝑣)) = (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))))
7372breq1d 4010 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) · (abs‘𝑣)) < (𝐴 / 2) ↔ (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7468, 73sylibd 149 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2)))
7517adantr 276 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ+)
7645, 35, 75ltmuldiv2d 9732 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
7731, 38, 39subdid 8361 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · (𝑣𝐶)) = ((𝐵 · 𝑣) − (𝐵 · 𝐶)))
7877fveq2d 5515 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))))
7931, 44absmuld 11187 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘(𝐵 · (𝑣𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8078, 79eqtr3d 2212 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) = ((abs‘𝐵) · (abs‘(𝑣𝐶))))
8131abscld 11174 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ∈ ℝ)
8281lep1d 8877 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘𝐵) ≤ ((abs‘𝐵) + 1))
839adantr 276 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) + 1) ∈ ℝ)
84 abscl 11044 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → (abs‘(𝑣𝐶)) ∈ ℝ)
85 absge0 11053 . . . . . . . . . . . . 13 ((𝑣𝐶) ∈ ℂ → 0 ≤ (abs‘(𝑣𝐶)))
8684, 85jca 306 . . . . . . . . . . . 12 ((𝑣𝐶) ∈ ℂ → ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶))))
87 lemul1a 8804 . . . . . . . . . . . . 13 ((((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) ∧ (abs‘𝐵) ≤ ((abs‘𝐵) + 1)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
8887ex 115 . . . . . . . . . . . 12 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ ((abs‘(𝑣𝐶)) ∈ ℝ ∧ 0 ≤ (abs‘(𝑣𝐶)))) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
8986, 88syl3an3 1273 . . . . . . . . . . 11 (((abs‘𝐵) ∈ ℝ ∧ ((abs‘𝐵) + 1) ∈ ℝ ∧ (𝑣𝐶) ∈ ℂ) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9081, 83, 44, 89syl3anc 1238 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) ≤ ((abs‘𝐵) + 1) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶)))))
9182, 90mpd 13 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘𝐵) · (abs‘(𝑣𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9280, 91eqbrtrd 4022 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))))
9331, 38mulcld 7968 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝑣) ∈ ℂ)
9431, 39mulcld 7968 . . . . . . . . . . 11 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝐵 · 𝐶) ∈ ℂ)
9593, 94subcld 8258 . . . . . . . . . 10 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((𝐵 · 𝑣) − (𝐵 · 𝐶)) ∈ ℂ)
9695abscld 11174 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ)
9783, 45remulcld 7978 . . . . . . . . 9 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ)
98 lelttr 8036 . . . . . . . . 9 (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ∈ ℝ ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∈ ℝ ∧ (𝐴 / 2) ∈ ℝ) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
9996, 97, 35, 98syl3anc 1238 . . . . . . . 8 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) ≤ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) ∧ (((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10092, 99mpand 429 . . . . . . 7 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((((abs‘𝐵) + 1) · (abs‘(𝑣𝐶))) < (𝐴 / 2) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10176, 100sylbird 170 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → ((abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
102101adantld 278 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)))
10374, 102jcad 307 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → ((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2))))
104 mulcl 7929 . . . . . 6 ((𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ) → (𝑢 · 𝑣) ∈ ℂ)
105104adantl 277 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (𝑢 · 𝑣) ∈ ℂ)
106 simpl1 1000 . . . . . 6 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ+)
107106rpred 9683 . . . . 5 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → 𝐴 ∈ ℝ)
108 abs3lem 11104 . . . . 5 ((((𝑢 · 𝑣) ∈ ℂ ∧ (𝐵 · 𝐶) ∈ ℂ) ∧ ((𝐵 · 𝑣) ∈ ℂ ∧ 𝐴 ∈ ℝ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
109105, 94, 93, 107, 108syl22anc 1239 . . . 4 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘((𝑢 · 𝑣) − (𝐵 · 𝑣))) < (𝐴 / 2) ∧ (abs‘((𝐵 · 𝑣) − (𝐵 · 𝐶))) < (𝐴 / 2)) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
110103, 109syld 45 . . 3 (((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ (𝑢 ∈ ℂ ∧ 𝑣 ∈ ℂ)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
111110ralrimivva 2559 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
112 breq2 4004 . . . . . 6 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((abs‘(𝑢𝐵)) < 𝑦 ↔ (abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1))))))
113112anbi1d 465 . . . . 5 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧)))
114113imbi1d 231 . . . 4 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → ((((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1151142ralbidv 2501 . . 3 (𝑦 = ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
116 breq2 4004 . . . . . 6 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((abs‘(𝑣𝐶)) < 𝑧 ↔ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))))
117116anbi2d 464 . . . . 5 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) ↔ ((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1)))))
118117imbi1d 231 . . . 4 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → ((((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
1191182ralbidv 2501 . . 3 (𝑧 = ((𝐴 / 2) / ((abs‘𝐵) + 1)) → (∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴) ↔ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)))
120115, 119rspc2ev 2856 . 2 ((((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∈ ℝ+ ∧ ((𝐴 / 2) / ((abs‘𝐵) + 1)) ∈ ℝ+ ∧ ∀𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < ((𝐴 / 2) / ((abs‘𝐶) + ((𝐴 / 2) / ((abs‘𝐵) + 1)))) ∧ (abs‘(𝑣𝐶)) < ((𝐴 / 2) / ((abs‘𝐵) + 1))) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴)) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
12129, 18, 111, 120syl3anc 1238 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ∃𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑢 ∈ ℂ ∀𝑣 ∈ ℂ (((abs‘(𝑢𝐵)) < 𝑦 ∧ (abs‘(𝑣𝐶)) < 𝑧) → (abs‘((𝑢 · 𝑣) − (𝐵 · 𝐶))) < 𝐴))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978   = wceq 1353  wcel 2148  wral 2455  wrex 2456   class class class wbr 4000  cfv 5212  (class class class)co 5869  cc 7800  cr 7801  0cc0 7802  1c1 7803   + caddc 7805   · cmul 7807   < clt 7982  cle 7983  cmin 8118   / cdiv 8618  2c2 8959  +crp 9640  abscabs 10990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-rp 9641  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992
This theorem is referenced by:  climmul  11319  mulcncntop  13721  mulc1cncf  13743  mulcncf  13758
  Copyright terms: Public domain W3C validator