| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > msqge0 | GIF version | ||
| Description: A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| msqge0 | ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl 8035 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ) | |
| 2 | 1 | anidms 397 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ) |
| 3 | 0re 8054 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | ltnsym2 8145 | . . . 4 ⊢ (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴))) | |
| 5 | 2, 3, 4 | sylancl 413 | . . 3 ⊢ (𝐴 ∈ ℝ → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴))) |
| 6 | orc 713 | . . . . . 6 ⊢ ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴))) | |
| 7 | reaplt 8643 | . . . . . . 7 ⊢ (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴)))) | |
| 8 | 2, 3, 7 | sylancl 413 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴)))) |
| 9 | 6, 8 | imbitrrid 156 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → (𝐴 · 𝐴) # 0)) |
| 10 | recn 8040 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 11 | mulap0r 8670 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) | |
| 12 | 10, 11 | syl3an1 1282 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) |
| 13 | 10, 12 | syl3an2 1283 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) |
| 14 | 13 | simpld 112 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → 𝐴 # 0) |
| 15 | 14 | 3expia 1207 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 · 𝐴) # 0 → 𝐴 # 0)) |
| 16 | 15 | anidms 397 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 → 𝐴 # 0)) |
| 17 | apsqgt0 8656 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) | |
| 18 | 17 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 → 0 < (𝐴 · 𝐴))) |
| 19 | 9, 16, 18 | 3syld 57 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → 0 < (𝐴 · 𝐴))) |
| 20 | 19 | ancld 325 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴)))) |
| 21 | 5, 20 | mtod 664 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ (𝐴 · 𝐴) < 0) |
| 22 | lenlt 8130 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 · 𝐴) ∈ ℝ) → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0)) | |
| 23 | 3, 2, 22 | sylancr 414 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0)) |
| 24 | 21, 23 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5934 ℂcc 7905 ℝcr 7906 0cc0 7907 · cmul 7912 < clt 8089 ≤ cle 8090 # cap 8636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-po 4341 df-iso 4342 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 |
| This theorem is referenced by: msqge0i 8672 msqge0d 8673 recexaplem2 8707 sqge0 10742 bernneq 10786 |
| Copyright terms: Public domain | W3C validator |