ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  msqge0 GIF version

Theorem msqge0 8290
Description: A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
msqge0 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))

Proof of Theorem msqge0
StepHypRef Expression
1 remulcl 7666 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
21anidms 392 . . . 4 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
3 0re 7684 . . . 4 0 ∈ ℝ
4 ltnsym2 7771 . . . 4 (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴)))
52, 3, 4sylancl 407 . . 3 (𝐴 ∈ ℝ → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴)))
6 orc 684 . . . . . 6 ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴)))
7 reaplt 8262 . . . . . . 7 (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴))))
82, 3, 7sylancl 407 . . . . . 6 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴))))
96, 8syl5ibr 155 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → (𝐴 · 𝐴) # 0))
10 recn 7671 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
11 mulap0r 8289 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0))
1210, 11syl3an1 1230 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0))
1310, 12syl3an2 1231 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0))
1413simpld 111 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → 𝐴 # 0)
15143expia 1164 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 · 𝐴) # 0 → 𝐴 # 0))
1615anidms 392 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 → 𝐴 # 0))
17 apsqgt0 8275 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴))
1817ex 114 . . . . 5 (𝐴 ∈ ℝ → (𝐴 # 0 → 0 < (𝐴 · 𝐴)))
199, 16, 183syld 57 . . . 4 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → 0 < (𝐴 · 𝐴)))
2019ancld 321 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴))))
215, 20mtod 635 . 2 (𝐴 ∈ ℝ → ¬ (𝐴 · 𝐴) < 0)
22 lenlt 7757 . . 3 ((0 ∈ ℝ ∧ (𝐴 · 𝐴) ∈ ℝ) → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0))
233, 2, 22sylancr 408 . 2 (𝐴 ∈ ℝ → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0))
2421, 23mpbird 166 1 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680  w3a 943  wcel 1461   class class class wbr 3893  (class class class)co 5726  cc 7539  cr 7540  0cc0 7541   · cmul 7546   < clt 7718  cle 7719   # cap 8255
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1404  ax-7 1405  ax-gen 1406  ax-ie1 1450  ax-ie2 1451  ax-8 1463  ax-10 1464  ax-11 1465  ax-i12 1466  ax-bndl 1467  ax-4 1468  ax-13 1472  ax-14 1473  ax-17 1487  ax-i9 1491  ax-ial 1495  ax-i5r 1496  ax-ext 2095  ax-sep 4004  ax-pow 4056  ax-pr 4089  ax-un 4313  ax-setind 4410  ax-cnex 7630  ax-resscn 7631  ax-1cn 7632  ax-1re 7633  ax-icn 7634  ax-addcl 7635  ax-addrcl 7636  ax-mulcl 7637  ax-mulrcl 7638  ax-addcom 7639  ax-mulcom 7640  ax-addass 7641  ax-mulass 7642  ax-distr 7643  ax-i2m1 7644  ax-0lt1 7645  ax-1rid 7646  ax-0id 7647  ax-rnegex 7648  ax-precex 7649  ax-cnre 7650  ax-pre-ltirr 7651  ax-pre-ltwlin 7652  ax-pre-lttrn 7653  ax-pre-apti 7654  ax-pre-ltadd 7655  ax-pre-mulgt0 7656  ax-pre-mulext 7657
This theorem depends on definitions:  df-bi 116  df-3an 945  df-tru 1315  df-fal 1318  df-nf 1418  df-sb 1717  df-eu 1976  df-mo 1977  df-clab 2100  df-cleq 2106  df-clel 2109  df-nfc 2242  df-ne 2281  df-nel 2376  df-ral 2393  df-rex 2394  df-reu 2395  df-rab 2397  df-v 2657  df-sbc 2877  df-dif 3037  df-un 3039  df-in 3041  df-ss 3048  df-pw 3476  df-sn 3497  df-pr 3498  df-op 3500  df-uni 3701  df-br 3894  df-opab 3948  df-id 4173  df-po 4176  df-iso 4177  df-xp 4503  df-rel 4504  df-cnv 4505  df-co 4506  df-dm 4507  df-iota 5044  df-fun 5081  df-fv 5087  df-riota 5682  df-ov 5729  df-oprab 5730  df-mpo 5731  df-pnf 7720  df-mnf 7721  df-xr 7722  df-ltxr 7723  df-le 7724  df-sub 7852  df-neg 7853  df-reap 8249  df-ap 8256
This theorem is referenced by:  msqge0i  8291  msqge0d  8292  recexaplem2  8320  sqge0  10256  bernneq  10299
  Copyright terms: Public domain W3C validator