| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > msqge0 | GIF version | ||
| Description: A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| msqge0 | ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl 8052 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ) | |
| 2 | 1 | anidms 397 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ) |
| 3 | 0re 8071 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | ltnsym2 8162 | . . . 4 ⊢ (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴))) | |
| 5 | 2, 3, 4 | sylancl 413 | . . 3 ⊢ (𝐴 ∈ ℝ → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴))) |
| 6 | orc 713 | . . . . . 6 ⊢ ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴))) | |
| 7 | reaplt 8660 | . . . . . . 7 ⊢ (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴)))) | |
| 8 | 2, 3, 7 | sylancl 413 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴)))) |
| 9 | 6, 8 | imbitrrid 156 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → (𝐴 · 𝐴) # 0)) |
| 10 | recn 8057 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 11 | mulap0r 8687 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) | |
| 12 | 10, 11 | syl3an1 1282 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) |
| 13 | 10, 12 | syl3an2 1283 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) |
| 14 | 13 | simpld 112 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → 𝐴 # 0) |
| 15 | 14 | 3expia 1207 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 · 𝐴) # 0 → 𝐴 # 0)) |
| 16 | 15 | anidms 397 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 → 𝐴 # 0)) |
| 17 | apsqgt0 8673 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) | |
| 18 | 17 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 → 0 < (𝐴 · 𝐴))) |
| 19 | 9, 16, 18 | 3syld 57 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → 0 < (𝐴 · 𝐴))) |
| 20 | 19 | ancld 325 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴)))) |
| 21 | 5, 20 | mtod 664 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ (𝐴 · 𝐴) < 0) |
| 22 | lenlt 8147 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 · 𝐴) ∈ ℝ) → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0)) | |
| 23 | 3, 2, 22 | sylancr 414 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0)) |
| 24 | 21, 23 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∧ w3a 980 ∈ wcel 2175 class class class wbr 4043 (class class class)co 5943 ℂcc 7922 ℝcr 7923 0cc0 7924 · cmul 7929 < clt 8106 ≤ cle 8107 # cap 8653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 |
| This theorem is referenced by: msqge0i 8689 msqge0d 8690 recexaplem2 8724 sqge0 10759 bernneq 10803 |
| Copyright terms: Public domain | W3C validator |