ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  msqge0 GIF version

Theorem msqge0 8037
Description: A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
msqge0 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))

Proof of Theorem msqge0
StepHypRef Expression
1 remulcl 7417 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ)
21anidms 389 . . . 4 (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ)
3 0re 7435 . . . 4 0 ∈ ℝ
4 ltnsym2 7522 . . . 4 (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴)))
52, 3, 4sylancl 404 . . 3 (𝐴 ∈ ℝ → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴)))
6 orc 666 . . . . . 6 ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴)))
7 reaplt 8009 . . . . . . 7 (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴))))
82, 3, 7sylancl 404 . . . . . 6 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴))))
96, 8syl5ibr 154 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → (𝐴 · 𝐴) # 0))
10 recn 7422 . . . . . . . . 9 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
11 mulap0r 8036 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0))
1210, 11syl3an1 1205 . . . . . . . . 9 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0))
1310, 12syl3an2 1206 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0))
1413simpld 110 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → 𝐴 # 0)
15143expia 1143 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 · 𝐴) # 0 → 𝐴 # 0))
1615anidms 389 . . . . 5 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 → 𝐴 # 0))
17 apsqgt0 8022 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴))
1817ex 113 . . . . 5 (𝐴 ∈ ℝ → (𝐴 # 0 → 0 < (𝐴 · 𝐴)))
199, 16, 183syld 56 . . . 4 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → 0 < (𝐴 · 𝐴)))
2019ancld 318 . . 3 (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴))))
215, 20mtod 622 . 2 (𝐴 ∈ ℝ → ¬ (𝐴 · 𝐴) < 0)
22 lenlt 7508 . . 3 ((0 ∈ ℝ ∧ (𝐴 · 𝐴) ∈ ℝ) → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0))
233, 2, 22sylancr 405 . 2 (𝐴 ∈ ℝ → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0))
2421, 23mpbird 165 1 (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3a 922  wcel 1436   class class class wbr 3822  (class class class)co 5615  cc 7295  cr 7296  0cc0 7297   · cmul 7302   < clt 7469  cle 7470   # cap 8002
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410
This theorem depends on definitions:  df-bi 115  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-br 3823  df-opab 3877  df-id 4096  df-po 4099  df-iso 4100  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-iota 4948  df-fun 4985  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003
This theorem is referenced by:  msqge0i  8038  msqge0d  8039  recexaplem2  8063  sqge0  9951  bernneq  9992
  Copyright terms: Public domain W3C validator