| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > msqge0 | GIF version | ||
| Description: A square is nonnegative. Lemma 2.35 of [Geuvers], p. 9. (Contributed by NM, 23-May-2007.) (Revised by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| msqge0 | ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | remulcl 8123 | . . . . 5 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝐴 · 𝐴) ∈ ℝ) | |
| 2 | 1 | anidms 397 | . . . 4 ⊢ (𝐴 ∈ ℝ → (𝐴 · 𝐴) ∈ ℝ) |
| 3 | 0re 8142 | . . . 4 ⊢ 0 ∈ ℝ | |
| 4 | ltnsym2 8233 | . . . 4 ⊢ (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴))) | |
| 5 | 2, 3, 4 | sylancl 413 | . . 3 ⊢ (𝐴 ∈ ℝ → ¬ ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴))) |
| 6 | orc 717 | . . . . . 6 ⊢ ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴))) | |
| 7 | reaplt 8731 | . . . . . . 7 ⊢ (((𝐴 · 𝐴) ∈ ℝ ∧ 0 ∈ ℝ) → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴)))) | |
| 8 | 2, 3, 7 | sylancl 413 | . . . . . 6 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 ↔ ((𝐴 · 𝐴) < 0 ∨ 0 < (𝐴 · 𝐴)))) |
| 9 | 6, 8 | imbitrrid 156 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → (𝐴 · 𝐴) # 0)) |
| 10 | recn 8128 | . . . . . . . . 9 ⊢ (𝐴 ∈ ℝ → 𝐴 ∈ ℂ) | |
| 11 | mulap0r 8758 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) | |
| 12 | 10, 11 | syl3an1 1304 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℂ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) |
| 13 | 10, 12 | syl3an2 1305 | . . . . . . . 8 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → (𝐴 # 0 ∧ 𝐴 # 0)) |
| 14 | 13 | simpld 112 | . . . . . . 7 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐴 · 𝐴) # 0) → 𝐴 # 0) |
| 15 | 14 | 3expia 1229 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 ∈ ℝ) → ((𝐴 · 𝐴) # 0 → 𝐴 # 0)) |
| 16 | 15 | anidms 397 | . . . . 5 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) # 0 → 𝐴 # 0)) |
| 17 | apsqgt0 8744 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ ∧ 𝐴 # 0) → 0 < (𝐴 · 𝐴)) | |
| 18 | 17 | ex 115 | . . . . 5 ⊢ (𝐴 ∈ ℝ → (𝐴 # 0 → 0 < (𝐴 · 𝐴))) |
| 19 | 9, 16, 18 | 3syld 57 | . . . 4 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → 0 < (𝐴 · 𝐴))) |
| 20 | 19 | ancld 325 | . . 3 ⊢ (𝐴 ∈ ℝ → ((𝐴 · 𝐴) < 0 → ((𝐴 · 𝐴) < 0 ∧ 0 < (𝐴 · 𝐴)))) |
| 21 | 5, 20 | mtod 667 | . 2 ⊢ (𝐴 ∈ ℝ → ¬ (𝐴 · 𝐴) < 0) |
| 22 | lenlt 8218 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 · 𝐴) ∈ ℝ) → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0)) | |
| 23 | 3, 2, 22 | sylancr 414 | . 2 ⊢ (𝐴 ∈ ℝ → (0 ≤ (𝐴 · 𝐴) ↔ ¬ (𝐴 · 𝐴) < 0)) |
| 24 | 21, 23 | mpbird 167 | 1 ⊢ (𝐴 ∈ ℝ → 0 ≤ (𝐴 · 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4082 (class class class)co 6000 ℂcc 7993 ℝcr 7994 0cc0 7995 · cmul 8000 < clt 8177 ≤ cle 8178 # cap 8724 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-mulrcl 8094 ax-addcom 8095 ax-mulcom 8096 ax-addass 8097 ax-mulass 8098 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-1rid 8102 ax-0id 8103 ax-rnegex 8104 ax-precex 8105 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 ax-pre-mulgt0 8112 ax-pre-mulext 8113 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-po 4386 df-iso 4387 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-reap 8718 df-ap 8725 |
| This theorem is referenced by: msqge0i 8760 msqge0d 8761 recexaplem2 8795 sqge0 10833 bernneq 10877 |
| Copyright terms: Public domain | W3C validator |