| Step | Hyp | Ref
 | Expression | 
| 1 |   | prmz 12279 | 
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) | 
| 2 |   | gcddvds 12130 | 
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁)) | 
| 3 | 1, 2 | sylan 283 | 
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁)) | 
| 4 | 3 | simprd 114 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑁) | 
| 5 |   | breq1 4036 | 
. . . . 5
⊢ ((𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) ∥ 𝑁 ↔ 𝑃 ∥ 𝑁)) | 
| 6 | 4, 5 | syl5ibcom 155 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 𝑃 → 𝑃 ∥ 𝑁)) | 
| 7 | 6 | con3d 632 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
𝑃 ∥ 𝑁 → ¬ (𝑃 gcd 𝑁) = 𝑃)) | 
| 8 |   | 0nnn 9017 | 
. . . . . . . . 9
⊢  ¬ 0
∈ ℕ | 
| 9 |   | prmnn 12278 | 
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) | 
| 10 |   | eleq1 2259 | 
. . . . . . . . . 10
⊢ (𝑃 = 0 → (𝑃 ∈ ℕ ↔ 0 ∈
ℕ)) | 
| 11 | 9, 10 | syl5ibcom 155 | 
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → (𝑃 = 0 → 0 ∈
ℕ)) | 
| 12 | 8, 11 | mtoi 665 | 
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → ¬
𝑃 = 0) | 
| 13 | 12 | intnanrd 933 | 
. . . . . . 7
⊢ (𝑃 ∈ ℙ → ¬
(𝑃 = 0 ∧ 𝑁 = 0)) | 
| 14 | 13 | adantr 276 | 
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ¬
(𝑃 = 0 ∧ 𝑁 = 0)) | 
| 15 |   | gcdn0cl 12129 | 
. . . . . . . 8
⊢ (((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑃 = 0 ∧ 𝑁 = 0)) → (𝑃 gcd 𝑁) ∈ ℕ) | 
| 16 | 15 | ex 115 | 
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ)) | 
| 17 | 1, 16 | sylan 283 | 
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ)) | 
| 18 | 14, 17 | mpd 13 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℕ) | 
| 19 | 3 | simpld 112 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑃) | 
| 20 |   | isprm2 12285 | 
. . . . . . . 8
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) | 
| 21 | 20 | simprbi 275 | 
. . . . . . 7
⊢ (𝑃 ∈ ℙ →
∀𝑧 ∈ ℕ
(𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) | 
| 22 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑧 = (𝑃 gcd 𝑁) → (𝑧 ∥ 𝑃 ↔ (𝑃 gcd 𝑁) ∥ 𝑃)) | 
| 23 |   | eqeq1 2203 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 1 ↔ (𝑃 gcd 𝑁) = 1)) | 
| 24 |   | eqeq1 2203 | 
. . . . . . . . . 10
⊢ (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 𝑃 ↔ (𝑃 gcd 𝑁) = 𝑃)) | 
| 25 | 23, 24 | orbi12d 794 | 
. . . . . . . . 9
⊢ (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))) | 
| 26 | 22, 25 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))) | 
| 27 | 26 | rspcv 2864 | 
. . . . . . 7
⊢ ((𝑃 gcd 𝑁) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))) | 
| 28 | 21, 27 | syl5com 29 | 
. . . . . 6
⊢ (𝑃 ∈ ℙ → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))) | 
| 29 | 28 | adantr 276 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))) | 
| 30 | 18, 19, 29 | mp2d 47 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)) | 
| 31 |   | biorf 745 | 
. . . . 5
⊢ (¬
(𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1))) | 
| 32 |   | orcom 729 | 
. . . . 5
⊢ (((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)) | 
| 33 | 31, 32 | bitrdi 196 | 
. . . 4
⊢ (¬
(𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))) | 
| 34 | 30, 33 | syl5ibrcom 157 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 gcd 𝑁) = 𝑃 → (𝑃 gcd 𝑁) = 1)) | 
| 35 | 7, 34 | syld 45 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
𝑃 ∥ 𝑁 → (𝑃 gcd 𝑁) = 1)) | 
| 36 |   | iddvds 11969 | 
. . . . . . 7
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) | 
| 37 | 1, 36 | syl 14 | 
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∥ 𝑃) | 
| 38 | 37 | adantr 276 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃 ∥ 𝑃) | 
| 39 |   | dvdslegcd 12131 | 
. . . . . . . . 9
⊢ (((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑃 = 0 ∧ 𝑁 = 0)) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))) | 
| 40 | 39 | ex 115 | 
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))) | 
| 41 | 40 | 3anidm12 1306 | 
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))) | 
| 42 | 1, 41 | sylan 283 | 
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))) | 
| 43 | 14, 42 | mpd 13 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))) | 
| 44 | 38, 43 | mpand 429 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 → 𝑃 ≤ (𝑃 gcd 𝑁))) | 
| 45 |   | prmgt1 12300 | 
. . . . . 6
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) | 
| 46 | 45 | adantr 276 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 1 <
𝑃) | 
| 47 | 1 | zred 9448 | 
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) | 
| 48 | 47 | adantr 276 | 
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃 ∈
ℝ) | 
| 49 | 18 | nnred 9003 | 
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℝ) | 
| 50 |   | 1re 8025 | 
. . . . . . 7
⊢ 1 ∈
ℝ | 
| 51 |   | ltletr 8116 | 
. . . . . . 7
⊢ ((1
∈ ℝ ∧ 𝑃
∈ ℝ ∧ (𝑃 gcd
𝑁) ∈ ℝ) →
((1 < 𝑃 ∧ 𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁))) | 
| 52 | 50, 51 | mp3an1 1335 | 
. . . . . 6
⊢ ((𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃 ∧ 𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁))) | 
| 53 | 48, 49, 52 | syl2anc 411 | 
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((1 <
𝑃 ∧ 𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁))) | 
| 54 | 46, 53 | mpand 429 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ≤ (𝑃 gcd 𝑁) → 1 < (𝑃 gcd 𝑁))) | 
| 55 |   | ltne 8111 | 
. . . . . 6
⊢ ((1
∈ ℝ ∧ 1 < (𝑃 gcd 𝑁)) → (𝑃 gcd 𝑁) ≠ 1) | 
| 56 | 50, 55 | mpan 424 | 
. . . . 5
⊢ (1 <
(𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1) | 
| 57 | 56 | a1i 9 | 
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (1 <
(𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1)) | 
| 58 | 44, 54, 57 | 3syld 57 | 
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 → (𝑃 gcd 𝑁) ≠ 1)) | 
| 59 | 58 | necon2bd 2425 | 
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 → ¬ 𝑃 ∥ 𝑁)) | 
| 60 | 35, 59 | impbid 129 | 
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) |