ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprm GIF version

Theorem coprm 12652
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))

Proof of Theorem coprm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmz 12619 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2 gcddvds 12470 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
31, 2sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
43simprd 114 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑁)
5 breq1 4085 . . . . 5 ((𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) ∥ 𝑁𝑃𝑁))
64, 5syl5ibcom 155 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 𝑃𝑃𝑁))
76con3d 634 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 𝑃))
8 0nnn 9125 . . . . . . . . 9 ¬ 0 ∈ ℕ
9 prmnn 12618 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
10 eleq1 2292 . . . . . . . . . 10 (𝑃 = 0 → (𝑃 ∈ ℕ ↔ 0 ∈ ℕ))
119, 10syl5ibcom 155 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 = 0 → 0 ∈ ℕ))
128, 11mtoi 668 . . . . . . . 8 (𝑃 ∈ ℙ → ¬ 𝑃 = 0)
1312intnanrd 937 . . . . . . 7 (𝑃 ∈ ℙ → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
1413adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
15 gcdn0cl 12469 . . . . . . . 8 (((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → (𝑃 gcd 𝑁) ∈ ℕ)
1615ex 115 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
171, 16sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
1814, 17mpd 13 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℕ)
193simpld 112 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑃)
20 isprm2 12625 . . . . . . . 8 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2120simprbi 275 . . . . . . 7 (𝑃 ∈ ℙ → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
22 breq1 4085 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → (𝑧𝑃 ↔ (𝑃 gcd 𝑁) ∥ 𝑃))
23 eqeq1 2236 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 1 ↔ (𝑃 gcd 𝑁) = 1))
24 eqeq1 2236 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 𝑃 ↔ (𝑃 gcd 𝑁) = 𝑃))
2523, 24orbi12d 798 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
2622, 25imbi12d 234 . . . . . . . 8 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2726rspcv 2903 . . . . . . 7 ((𝑃 gcd 𝑁) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2821, 27syl5com 29 . . . . . 6 (𝑃 ∈ ℙ → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2928adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
3018, 19, 29mp2d 47 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
31 biorf 749 . . . . 5 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1)))
32 orcom 733 . . . . 5 (((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
3331, 32bitrdi 196 . . . 4 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
3430, 33syl5ibrcom 157 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 gcd 𝑁) = 𝑃 → (𝑃 gcd 𝑁) = 1))
357, 34syld 45 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → (𝑃 gcd 𝑁) = 1))
36 iddvds 12301 . . . . . . 7 (𝑃 ∈ ℤ → 𝑃𝑃)
371, 36syl 14 . . . . . 6 (𝑃 ∈ ℙ → 𝑃𝑃)
3837adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃𝑃)
39 dvdslegcd 12471 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4039ex 115 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
41403anidm12 1329 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
421, 41sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
4314, 42mpd 13 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4438, 43mpand 429 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁𝑃 ≤ (𝑃 gcd 𝑁)))
45 prmgt1 12640 . . . . . 6 (𝑃 ∈ ℙ → 1 < 𝑃)
4645adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 1 < 𝑃)
471zred 9557 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4847adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃 ∈ ℝ)
4918nnred 9111 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℝ)
50 1re 8133 . . . . . . 7 1 ∈ ℝ
51 ltletr 8224 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5250, 51mp3an1 1358 . . . . . 6 ((𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5348, 49, 52syl2anc 411 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5446, 53mpand 429 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ≤ (𝑃 gcd 𝑁) → 1 < (𝑃 gcd 𝑁)))
55 ltne 8219 . . . . . 6 ((1 ∈ ℝ ∧ 1 < (𝑃 gcd 𝑁)) → (𝑃 gcd 𝑁) ≠ 1)
5650, 55mpan 424 . . . . 5 (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1)
5756a1i 9 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1))
5844, 54, 573syld 57 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 → (𝑃 gcd 𝑁) ≠ 1))
5958necon2bd 2458 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 → ¬ 𝑃𝑁))
6035, 59impbid 129 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  w3a 1002   = wceq 1395  wcel 2200  wne 2400  wral 2508   class class class wbr 4082  cfv 5314  (class class class)co 5994  cr 7986  0cc0 7987  1c1 7988   < clt 8169  cle 8170  cn 9098  2c2 9149  cz 9434  cuz 9710  cdvds 12284   gcd cgcd 12460  cprime 12615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-mulrcl 8086  ax-addcom 8087  ax-mulcom 8088  ax-addass 8089  ax-mulass 8090  ax-distr 8091  ax-i2m1 8092  ax-0lt1 8093  ax-1rid 8094  ax-0id 8095  ax-rnegex 8096  ax-precex 8097  ax-cnre 8098  ax-pre-ltirr 8099  ax-pre-ltwlin 8100  ax-pre-lttrn 8101  ax-pre-apti 8102  ax-pre-ltadd 8103  ax-pre-mulgt0 8104  ax-pre-mulext 8105  ax-arch 8106  ax-caucvg 8107
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-ilim 4457  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-frec 6527  df-1o 6552  df-2o 6553  df-er 6670  df-en 6878  df-sup 7139  df-pnf 8171  df-mnf 8172  df-xr 8173  df-ltxr 8174  df-le 8175  df-sub 8307  df-neg 8308  df-reap 8710  df-ap 8717  df-div 8808  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-n0 9358  df-z 9435  df-uz 9711  df-q 9803  df-rp 9838  df-fz 10193  df-fzo 10327  df-fl 10477  df-mod 10532  df-seqfrec 10657  df-exp 10748  df-cj 11339  df-re 11340  df-im 11341  df-rsqrt 11495  df-abs 11496  df-dvds 12285  df-gcd 12461  df-prm 12616
This theorem is referenced by:  prmrp  12653  euclemma  12654  cncongrprm  12665  isoddgcd1  12667  phiprmpw  12730  fermltl  12742  prmdiv  12743  prmdiveq  12744  vfermltl  12760  prmpwdvds  12864  perfect1  15657  perfectlem1  15658  perfectlem2  15659  lgslem1  15664  lgsprme0  15706  gausslemma2dlem0c  15715  lgseisenlem3  15736  lgsquad2lem2  15746
  Copyright terms: Public domain W3C validator