Step | Hyp | Ref
| Expression |
1 | | prmz 12065 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℤ) |
2 | | gcddvds 11918 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁)) |
3 | 1, 2 | sylan 281 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁)) |
4 | 3 | simprd 113 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑁) |
5 | | breq1 3992 |
. . . . 5
⊢ ((𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) ∥ 𝑁 ↔ 𝑃 ∥ 𝑁)) |
6 | 4, 5 | syl5ibcom 154 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 𝑃 → 𝑃 ∥ 𝑁)) |
7 | 6 | con3d 626 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
𝑃 ∥ 𝑁 → ¬ (𝑃 gcd 𝑁) = 𝑃)) |
8 | | 0nnn 8905 |
. . . . . . . . 9
⊢ ¬ 0
∈ ℕ |
9 | | prmnn 12064 |
. . . . . . . . . 10
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℕ) |
10 | | eleq1 2233 |
. . . . . . . . . 10
⊢ (𝑃 = 0 → (𝑃 ∈ ℕ ↔ 0 ∈
ℕ)) |
11 | 9, 10 | syl5ibcom 154 |
. . . . . . . . 9
⊢ (𝑃 ∈ ℙ → (𝑃 = 0 → 0 ∈
ℕ)) |
12 | 8, 11 | mtoi 659 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ → ¬
𝑃 = 0) |
13 | 12 | intnanrd 927 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → ¬
(𝑃 = 0 ∧ 𝑁 = 0)) |
14 | 13 | adantr 274 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ¬
(𝑃 = 0 ∧ 𝑁 = 0)) |
15 | | gcdn0cl 11917 |
. . . . . . . 8
⊢ (((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑃 = 0 ∧ 𝑁 = 0)) → (𝑃 gcd 𝑁) ∈ ℕ) |
16 | 15 | ex 114 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ)) |
17 | 1, 16 | sylan 281 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ)) |
18 | 14, 17 | mpd 13 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℕ) |
19 | 3 | simpld 111 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑃) |
20 | | isprm2 12071 |
. . . . . . . 8
⊢ (𝑃 ∈ ℙ ↔ (𝑃 ∈
(ℤ≥‘2) ∧ ∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))) |
21 | 20 | simprbi 273 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ →
∀𝑧 ∈ ℕ
(𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))) |
22 | | breq1 3992 |
. . . . . . . . 9
⊢ (𝑧 = (𝑃 gcd 𝑁) → (𝑧 ∥ 𝑃 ↔ (𝑃 gcd 𝑁) ∥ 𝑃)) |
23 | | eqeq1 2177 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 1 ↔ (𝑃 gcd 𝑁) = 1)) |
24 | | eqeq1 2177 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 𝑃 ↔ (𝑃 gcd 𝑁) = 𝑃)) |
25 | 23, 24 | orbi12d 788 |
. . . . . . . . 9
⊢ (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))) |
26 | 22, 25 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))) |
27 | 26 | rspcv 2830 |
. . . . . . 7
⊢ ((𝑃 gcd 𝑁) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧 ∥ 𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))) |
28 | 21, 27 | syl5com 29 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))) |
29 | 28 | adantr 274 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))) |
30 | 18, 19, 29 | mp2d 47 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)) |
31 | | biorf 739 |
. . . . 5
⊢ (¬
(𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1))) |
32 | | orcom 723 |
. . . . 5
⊢ (((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)) |
33 | 31, 32 | bitrdi 195 |
. . . 4
⊢ (¬
(𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))) |
34 | 30, 33 | syl5ibrcom 156 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 gcd 𝑁) = 𝑃 → (𝑃 gcd 𝑁) = 1)) |
35 | 7, 34 | syld 45 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
𝑃 ∥ 𝑁 → (𝑃 gcd 𝑁) = 1)) |
36 | | iddvds 11766 |
. . . . . . 7
⊢ (𝑃 ∈ ℤ → 𝑃 ∥ 𝑃) |
37 | 1, 36 | syl 14 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 𝑃 ∥ 𝑃) |
38 | 37 | adantr 274 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃 ∥ 𝑃) |
39 | | dvdslegcd 11919 |
. . . . . . . . 9
⊢ (((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬
(𝑃 = 0 ∧ 𝑁 = 0)) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))) |
40 | 39 | ex 114 |
. . . . . . . 8
⊢ ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))) |
41 | 40 | 3anidm12 1290 |
. . . . . . 7
⊢ ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))) |
42 | 1, 41 | sylan 281 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
(𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))) |
43 | 14, 42 | mpd 13 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 ∥ 𝑃 ∧ 𝑃 ∥ 𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))) |
44 | 38, 43 | mpand 427 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 → 𝑃 ≤ (𝑃 gcd 𝑁))) |
45 | | prmgt1 12086 |
. . . . . 6
⊢ (𝑃 ∈ ℙ → 1 <
𝑃) |
46 | 45 | adantr 274 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 1 <
𝑃) |
47 | 1 | zred 9334 |
. . . . . . 7
⊢ (𝑃 ∈ ℙ → 𝑃 ∈
ℝ) |
48 | 47 | adantr 274 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃 ∈
ℝ) |
49 | 18 | nnred 8891 |
. . . . . 6
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℝ) |
50 | | 1re 7919 |
. . . . . . 7
⊢ 1 ∈
ℝ |
51 | | ltletr 8009 |
. . . . . . 7
⊢ ((1
∈ ℝ ∧ 𝑃
∈ ℝ ∧ (𝑃 gcd
𝑁) ∈ ℝ) →
((1 < 𝑃 ∧ 𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁))) |
52 | 50, 51 | mp3an1 1319 |
. . . . . 6
⊢ ((𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃 ∧ 𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁))) |
53 | 48, 49, 52 | syl2anc 409 |
. . . . 5
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((1 <
𝑃 ∧ 𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁))) |
54 | 46, 53 | mpand 427 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ≤ (𝑃 gcd 𝑁) → 1 < (𝑃 gcd 𝑁))) |
55 | | ltne 8004 |
. . . . . 6
⊢ ((1
∈ ℝ ∧ 1 < (𝑃 gcd 𝑁)) → (𝑃 gcd 𝑁) ≠ 1) |
56 | 50, 55 | mpan 422 |
. . . . 5
⊢ (1 <
(𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1) |
57 | 56 | a1i 9 |
. . . 4
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (1 <
(𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1)) |
58 | 44, 54, 57 | 3syld 57 |
. . 3
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ∥ 𝑁 → (𝑃 gcd 𝑁) ≠ 1)) |
59 | 58 | necon2bd 2398 |
. 2
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 → ¬ 𝑃 ∥ 𝑁)) |
60 | 35, 59 | impbid 128 |
1
⊢ ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬
𝑃 ∥ 𝑁 ↔ (𝑃 gcd 𝑁) = 1)) |