ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprm GIF version

Theorem coprm 10998
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))

Proof of Theorem coprm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmz 10968 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2 gcddvds 10830 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
31, 2sylan 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
43simprd 112 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑁)
5 breq1 3823 . . . . 5 ((𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) ∥ 𝑁𝑃𝑁))
64, 5syl5ibcom 153 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 𝑃𝑃𝑁))
76con3d 594 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 𝑃))
8 0nnn 8384 . . . . . . . . 9 ¬ 0 ∈ ℕ
9 prmnn 10967 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
10 eleq1 2147 . . . . . . . . . 10 (𝑃 = 0 → (𝑃 ∈ ℕ ↔ 0 ∈ ℕ))
119, 10syl5ibcom 153 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 = 0 → 0 ∈ ℕ))
128, 11mtoi 623 . . . . . . . 8 (𝑃 ∈ ℙ → ¬ 𝑃 = 0)
1312intnanrd 877 . . . . . . 7 (𝑃 ∈ ℙ → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
1413adantr 270 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
15 gcdn0cl 10829 . . . . . . . 8 (((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → (𝑃 gcd 𝑁) ∈ ℕ)
1615ex 113 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
171, 16sylan 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
1814, 17mpd 13 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℕ)
193simpld 110 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑃)
20 isprm2 10974 . . . . . . . 8 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2120simprbi 269 . . . . . . 7 (𝑃 ∈ ℙ → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
22 breq1 3823 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → (𝑧𝑃 ↔ (𝑃 gcd 𝑁) ∥ 𝑃))
23 eqeq1 2091 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 1 ↔ (𝑃 gcd 𝑁) = 1))
24 eqeq1 2091 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 𝑃 ↔ (𝑃 gcd 𝑁) = 𝑃))
2523, 24orbi12d 740 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
2622, 25imbi12d 232 . . . . . . . 8 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2726rspcv 2711 . . . . . . 7 ((𝑃 gcd 𝑁) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2821, 27syl5com 29 . . . . . 6 (𝑃 ∈ ℙ → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2928adantr 270 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
3018, 19, 29mp2d 46 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
31 biorf 696 . . . . 5 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1)))
32 orcom 680 . . . . 5 (((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
3331, 32syl6bb 194 . . . 4 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
3430, 33syl5ibrcom 155 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 gcd 𝑁) = 𝑃 → (𝑃 gcd 𝑁) = 1))
357, 34syld 44 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → (𝑃 gcd 𝑁) = 1))
36 iddvds 10684 . . . . . . 7 (𝑃 ∈ ℤ → 𝑃𝑃)
371, 36syl 14 . . . . . 6 (𝑃 ∈ ℙ → 𝑃𝑃)
3837adantr 270 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃𝑃)
39 dvdslegcd 10831 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4039ex 113 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
41403anidm12 1229 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
421, 41sylan 277 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
4314, 42mpd 13 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4438, 43mpand 420 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁𝑃 ≤ (𝑃 gcd 𝑁)))
45 prmgt1 10988 . . . . . 6 (𝑃 ∈ ℙ → 1 < 𝑃)
4645adantr 270 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 1 < 𝑃)
471zred 8801 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4847adantr 270 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃 ∈ ℝ)
4918nnred 8370 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℝ)
50 1re 7431 . . . . . . 7 1 ∈ ℝ
51 ltletr 7518 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5250, 51mp3an1 1258 . . . . . 6 ((𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5348, 49, 52syl2anc 403 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5446, 53mpand 420 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ≤ (𝑃 gcd 𝑁) → 1 < (𝑃 gcd 𝑁)))
55 ltne 7514 . . . . . 6 ((1 ∈ ℝ ∧ 1 < (𝑃 gcd 𝑁)) → (𝑃 gcd 𝑁) ≠ 1)
5650, 55mpan 415 . . . . 5 (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1)
5756a1i 9 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1))
5844, 54, 573syld 56 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 → (𝑃 gcd 𝑁) ≠ 1))
5958necon2bd 2309 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 → ¬ 𝑃𝑁))
6035, 59impbid 127 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  wo 662  w3a 922   = wceq 1287  wcel 1436  wne 2251  wral 2355   class class class wbr 3820  cfv 4981  (class class class)co 5613  cr 7293  0cc0 7294  1c1 7295   < clt 7466  cle 7467  cn 8357  2c2 8407  cz 8683  cuz 8951  cdvds 10671   gcd cgcd 10813  cprime 10964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-coll 3929  ax-sep 3932  ax-nul 3940  ax-pow 3984  ax-pr 4010  ax-un 4234  ax-setind 4326  ax-iinf 4376  ax-cnex 7380  ax-resscn 7381  ax-1cn 7382  ax-1re 7383  ax-icn 7384  ax-addcl 7385  ax-addrcl 7386  ax-mulcl 7387  ax-mulrcl 7388  ax-addcom 7389  ax-mulcom 7390  ax-addass 7391  ax-mulass 7392  ax-distr 7393  ax-i2m1 7394  ax-0lt1 7395  ax-1rid 7396  ax-0id 7397  ax-rnegex 7398  ax-precex 7399  ax-cnre 7400  ax-pre-ltirr 7401  ax-pre-ltwlin 7402  ax-pre-lttrn 7403  ax-pre-apti 7404  ax-pre-ltadd 7405  ax-pre-mulgt0 7406  ax-pre-mulext 7407  ax-arch 7408  ax-caucvg 7409
This theorem depends on definitions:  df-bi 115  df-dc 779  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-nul 3276  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3637  df-int 3672  df-iun 3715  df-br 3821  df-opab 3875  df-mpt 3876  df-tr 3912  df-id 4094  df-po 4097  df-iso 4098  df-iord 4167  df-on 4169  df-ilim 4170  df-suc 4172  df-iom 4379  df-xp 4417  df-rel 4418  df-cnv 4419  df-co 4420  df-dm 4421  df-rn 4422  df-res 4423  df-ima 4424  df-iota 4946  df-fun 4983  df-fn 4984  df-f 4985  df-f1 4986  df-fo 4987  df-f1o 4988  df-fv 4989  df-riota 5569  df-ov 5616  df-oprab 5617  df-mpt2 5618  df-1st 5868  df-2nd 5869  df-recs 6024  df-frec 6110  df-1o 6135  df-2o 6136  df-er 6244  df-en 6410  df-sup 6623  df-pnf 7468  df-mnf 7469  df-xr 7470  df-ltxr 7471  df-le 7472  df-sub 7599  df-neg 7600  df-reap 7993  df-ap 8000  df-div 8079  df-inn 8358  df-2 8416  df-3 8417  df-4 8418  df-n0 8607  df-z 8684  df-uz 8952  df-q 9037  df-rp 9067  df-fz 9357  df-fzo 9482  df-fl 9605  df-mod 9658  df-iseq 9780  df-iexp 9853  df-cj 10171  df-re 10172  df-im 10173  df-rsqrt 10326  df-abs 10327  df-dvds 10672  df-gcd 10814  df-prm 10965
This theorem is referenced by:  prmrp  10999  euclemma  11000  cncongrprm  11011  isoddgcd1  11013  phiprmpw  11073
  Copyright terms: Public domain W3C validator