ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  coprm GIF version

Theorem coprm 12114
Description: A prime number either divides an integer or is coprime to it, but not both. Theorem 1.8 in [ApostolNT] p. 17. (Contributed by Paul Chapman, 22-Jun-2011.)
Assertion
Ref Expression
coprm ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))

Proof of Theorem coprm
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 prmz 12081 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
2 gcddvds 11934 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
31, 2sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∥ 𝑃 ∧ (𝑃 gcd 𝑁) ∥ 𝑁))
43simprd 114 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑁)
5 breq1 4003 . . . . 5 ((𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) ∥ 𝑁𝑃𝑁))
64, 5syl5ibcom 155 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 𝑃𝑃𝑁))
76con3d 631 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → ¬ (𝑃 gcd 𝑁) = 𝑃))
8 0nnn 8922 . . . . . . . . 9 ¬ 0 ∈ ℕ
9 prmnn 12080 . . . . . . . . . 10 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
10 eleq1 2240 . . . . . . . . . 10 (𝑃 = 0 → (𝑃 ∈ ℕ ↔ 0 ∈ ℕ))
119, 10syl5ibcom 155 . . . . . . . . 9 (𝑃 ∈ ℙ → (𝑃 = 0 → 0 ∈ ℕ))
128, 11mtoi 664 . . . . . . . 8 (𝑃 ∈ ℙ → ¬ 𝑃 = 0)
1312intnanrd 932 . . . . . . 7 (𝑃 ∈ ℙ → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
1413adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ¬ (𝑃 = 0 ∧ 𝑁 = 0))
15 gcdn0cl 11933 . . . . . . . 8 (((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → (𝑃 gcd 𝑁) ∈ ℕ)
1615ex 115 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
171, 16sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → (𝑃 gcd 𝑁) ∈ ℕ))
1814, 17mpd 13 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℕ)
193simpld 112 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∥ 𝑃)
20 isprm2 12087 . . . . . . . 8 (𝑃 ∈ ℙ ↔ (𝑃 ∈ (ℤ‘2) ∧ ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃))))
2120simprbi 275 . . . . . . 7 (𝑃 ∈ ℙ → ∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)))
22 breq1 4003 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → (𝑧𝑃 ↔ (𝑃 gcd 𝑁) ∥ 𝑃))
23 eqeq1 2184 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 1 ↔ (𝑃 gcd 𝑁) = 1))
24 eqeq1 2184 . . . . . . . . . 10 (𝑧 = (𝑃 gcd 𝑁) → (𝑧 = 𝑃 ↔ (𝑃 gcd 𝑁) = 𝑃))
2523, 24orbi12d 793 . . . . . . . . 9 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧 = 1 ∨ 𝑧 = 𝑃) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
2622, 25imbi12d 234 . . . . . . . 8 (𝑧 = (𝑃 gcd 𝑁) → ((𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) ↔ ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2726rspcv 2837 . . . . . . 7 ((𝑃 gcd 𝑁) ∈ ℕ → (∀𝑧 ∈ ℕ (𝑧𝑃 → (𝑧 = 1 ∨ 𝑧 = 𝑃)) → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2821, 27syl5com 29 . . . . . 6 (𝑃 ∈ ℙ → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
2928adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) ∈ ℕ → ((𝑃 gcd 𝑁) ∥ 𝑃 → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))))
3018, 19, 29mp2d 47 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
31 biorf 744 . . . . 5 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1)))
32 orcom 728 . . . . 5 (((𝑃 gcd 𝑁) = 𝑃 ∨ (𝑃 gcd 𝑁) = 1) ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃))
3331, 32bitrdi 196 . . . 4 (¬ (𝑃 gcd 𝑁) = 𝑃 → ((𝑃 gcd 𝑁) = 1 ↔ ((𝑃 gcd 𝑁) = 1 ∨ (𝑃 gcd 𝑁) = 𝑃)))
3430, 33syl5ibrcom 157 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 gcd 𝑁) = 𝑃 → (𝑃 gcd 𝑁) = 1))
357, 34syld 45 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 → (𝑃 gcd 𝑁) = 1))
36 iddvds 11782 . . . . . . 7 (𝑃 ∈ ℤ → 𝑃𝑃)
371, 36syl 14 . . . . . 6 (𝑃 ∈ ℙ → 𝑃𝑃)
3837adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃𝑃)
39 dvdslegcd 11935 . . . . . . . . 9 (((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ¬ (𝑃 = 0 ∧ 𝑁 = 0)) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4039ex 115 . . . . . . . 8 ((𝑃 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
41403anidm12 1295 . . . . . . 7 ((𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
421, 41sylan 283 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ (𝑃 = 0 ∧ 𝑁 = 0) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁))))
4314, 42mpd 13 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃𝑃𝑃𝑁) → 𝑃 ≤ (𝑃 gcd 𝑁)))
4438, 43mpand 429 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁𝑃 ≤ (𝑃 gcd 𝑁)))
45 prmgt1 12102 . . . . . 6 (𝑃 ∈ ℙ → 1 < 𝑃)
4645adantr 276 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 1 < 𝑃)
471zred 9351 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
4847adantr 276 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → 𝑃 ∈ ℝ)
4918nnred 8908 . . . . . 6 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 gcd 𝑁) ∈ ℝ)
50 1re 7934 . . . . . . 7 1 ∈ ℝ
51 ltletr 8024 . . . . . . 7 ((1 ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5250, 51mp3an1 1324 . . . . . 6 ((𝑃 ∈ ℝ ∧ (𝑃 gcd 𝑁) ∈ ℝ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5348, 49, 52syl2anc 411 . . . . 5 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((1 < 𝑃𝑃 ≤ (𝑃 gcd 𝑁)) → 1 < (𝑃 gcd 𝑁)))
5446, 53mpand 429 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃 ≤ (𝑃 gcd 𝑁) → 1 < (𝑃 gcd 𝑁)))
55 ltne 8019 . . . . . 6 ((1 ∈ ℝ ∧ 1 < (𝑃 gcd 𝑁)) → (𝑃 gcd 𝑁) ≠ 1)
5650, 55mpan 424 . . . . 5 (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1)
5756a1i 9 . . . 4 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (1 < (𝑃 gcd 𝑁) → (𝑃 gcd 𝑁) ≠ 1))
5844, 54, 573syld 57 . . 3 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (𝑃𝑁 → (𝑃 gcd 𝑁) ≠ 1))
5958necon2bd 2405 . 2 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → ((𝑃 gcd 𝑁) = 1 → ¬ 𝑃𝑁))
6035, 59impbid 129 1 ((𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ) → (¬ 𝑃𝑁 ↔ (𝑃 gcd 𝑁) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708  w3a 978   = wceq 1353  wcel 2148  wne 2347  wral 2455   class class class wbr 4000  cfv 5211  (class class class)co 5868  cr 7788  0cc0 7789  1c1 7790   < clt 7969  cle 7970  cn 8895  2c2 8946  cz 9229  cuz 9504  cdvds 11765   gcd cgcd 11913  cprime 12077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4205  ax-un 4429  ax-setind 4532  ax-iinf 4583  ax-cnex 7880  ax-resscn 7881  ax-1cn 7882  ax-1re 7883  ax-icn 7884  ax-addcl 7885  ax-addrcl 7886  ax-mulcl 7887  ax-mulrcl 7888  ax-addcom 7889  ax-mulcom 7890  ax-addass 7891  ax-mulass 7892  ax-distr 7893  ax-i2m1 7894  ax-0lt1 7895  ax-1rid 7896  ax-0id 7897  ax-rnegex 7898  ax-precex 7899  ax-cnre 7900  ax-pre-ltirr 7901  ax-pre-ltwlin 7902  ax-pre-lttrn 7903  ax-pre-apti 7904  ax-pre-ltadd 7905  ax-pre-mulgt0 7906  ax-pre-mulext 7907  ax-arch 7908  ax-caucvg 7909
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4289  df-po 4292  df-iso 4293  df-iord 4362  df-on 4364  df-ilim 4365  df-suc 4367  df-iom 4586  df-xp 4628  df-rel 4629  df-cnv 4630  df-co 4631  df-dm 4632  df-rn 4633  df-res 4634  df-ima 4635  df-iota 5173  df-fun 5213  df-fn 5214  df-f 5215  df-f1 5216  df-fo 5217  df-f1o 5218  df-fv 5219  df-riota 5824  df-ov 5871  df-oprab 5872  df-mpo 5873  df-1st 6134  df-2nd 6135  df-recs 6299  df-frec 6385  df-1o 6410  df-2o 6411  df-er 6528  df-en 6734  df-sup 6976  df-pnf 7971  df-mnf 7972  df-xr 7973  df-ltxr 7974  df-le 7975  df-sub 8107  df-neg 8108  df-reap 8509  df-ap 8516  df-div 8606  df-inn 8896  df-2 8954  df-3 8955  df-4 8956  df-n0 9153  df-z 9230  df-uz 9505  df-q 9596  df-rp 9628  df-fz 9983  df-fzo 10116  df-fl 10243  df-mod 10296  df-seqfrec 10419  df-exp 10493  df-cj 10822  df-re 10823  df-im 10824  df-rsqrt 10978  df-abs 10979  df-dvds 11766  df-gcd 11914  df-prm 12078
This theorem is referenced by:  prmrp  12115  euclemma  12116  cncongrprm  12127  isoddgcd1  12129  phiprmpw  12192  fermltl  12204  prmdiv  12205  prmdiveq  12206  vfermltl  12221  prmpwdvds  12323  lgslem1  14034  lgsprme0  14076
  Copyright terms: Public domain W3C validator