ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisenlem2 GIF version

Theorem lgseisenlem2 15750
Description: Lemma for lgseisen 15753. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
Assertion
Ref Expression
lgseisenlem2 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
Distinct variable groups:   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝑀(𝑥)

Proof of Theorem lgseisenlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.1 . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 lgseisen.2 . . . 4 (𝜑𝑄 ∈ (ℙ ∖ {2}))
3 lgseisen.3 . . . 4 (𝜑𝑃𝑄)
4 lgseisen.4 . . . 4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
5 lgseisen.5 . . . 4 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
61, 2, 3, 4, 5lgseisenlem1 15749 . . 3 (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
7 oveq2 6009 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
87oveq2d 6017 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑄 · (2 · 𝑥)) = (𝑄 · (2 · 𝑦)))
98oveq1d 6016 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃))
10 lgseisen.6 . . . . . . . . . . . . 13 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
119, 4, 103eqtr4g 2287 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑅 = 𝑆)
1211oveq2d 6017 . . . . . . . . . . 11 (𝑥 = 𝑦 → (-1↑𝑅) = (-1↑𝑆))
1312, 11oveq12d 6019 . . . . . . . . . 10 (𝑥 = 𝑦 → ((-1↑𝑅) · 𝑅) = ((-1↑𝑆) · 𝑆))
1413oveq1d 6016 . . . . . . . . 9 (𝑥 = 𝑦 → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑆) · 𝑆) mod 𝑃))
1514oveq1d 6016 . . . . . . . 8 (𝑥 = 𝑦 → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) = ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2))
16 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ (1...((𝑃 − 1) / 2)))
17 neg1z 9478 . . . . . . . . . . . . 13 -1 ∈ ℤ
182eldifad 3208 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄 ∈ ℙ)
19 prmnn 12632 . . . . . . . . . . . . . . . . . . 19 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
2018, 19syl 14 . . . . . . . . . . . . . . . . . 18 (𝜑𝑄 ∈ ℕ)
2120adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ ℕ)
22 2nn 9272 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
2322a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 ∈ ℕ)
24 elfznn 10250 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℕ)
2524ad2antrl 490 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ ℕ)
2623, 25nnmulcld 9159 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℕ)
2721, 26nnmulcld 9159 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑦)) ∈ ℕ)
2827nnzd 9568 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑦)) ∈ ℤ)
291eldifad 3208 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℙ)
30 prmnn 12632 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3129, 30syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
3231adantr 276 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ)
3328, 32zmodcld 10567 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · (2 · 𝑦)) mod 𝑃) ∈ ℕ0)
3410, 33eqeltrid 2316 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑆 ∈ ℕ0)
35 zexpcl 10776 . . . . . . . . . . . . 13 ((-1 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (-1↑𝑆) ∈ ℤ)
3617, 34, 35sylancr 414 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑆) ∈ ℤ)
3734nn0zd 9567 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑆 ∈ ℤ)
3836, 37zmulcld 9575 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · 𝑆) ∈ ℤ)
3938, 32zmodcld 10567 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℕ0)
4039nn0zd 9567 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℤ)
41 znq 9819 . . . . . . . . 9 (((((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℤ ∧ 2 ∈ ℕ) → ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) ∈ ℚ)
4240, 22, 41sylancl 413 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) ∈ ℚ)
435, 15, 16, 42fvmptd3 5728 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑀𝑦) = ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2))
44 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ (1...((𝑃 − 1) / 2)))
45 elfznn 10250 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
4645ad2antll 491 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ)
4723, 46nnmulcld 9159 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℕ)
4821, 47nnmulcld 9159 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑥)) ∈ ℕ)
4948nnzd 9568 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
5049, 32zmodcld 10567 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
514, 50eqeltrid 2316 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑅 ∈ ℕ0)
52 zexpcl 10776 . . . . . . . . . . . . . 14 ((-1 ∈ ℤ ∧ 𝑅 ∈ ℕ0) → (-1↑𝑅) ∈ ℤ)
5317, 51, 52sylancr 414 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) ∈ ℤ)
5451nn0zd 9567 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑅 ∈ ℤ)
5553, 54zmulcld 9575 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
5655, 32zmodcld 10567 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
5756nn0zd 9567 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ)
58 znq 9819 . . . . . . . . . 10 (((((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ 2 ∈ ℕ) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℚ)
5957, 22, 58sylancl 413 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℚ)
6059elexd 2813 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ V)
615fvmpt2 5718 . . . . . . . 8 ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ V) → (𝑀𝑥) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
6244, 60, 61syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑀𝑥) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
6343, 62eqeq12d 2244 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑀𝑦) = (𝑀𝑥) ↔ ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
642adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ (ℙ ∖ {2}))
6564eldifad 3208 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ ℙ)
66 prmz 12633 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
6765, 66syl 14 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ ℤ)
68 2z 9474 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
69 elfzelz 10221 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℤ)
7069ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ ℤ)
71 zmulcl 9500 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑦) ∈ ℤ)
7268, 70, 71sylancr 414 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℤ)
7367, 72zmulcld 9575 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑦)) ∈ ℤ)
741adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ (ℙ ∖ {2}))
7574eldifad 3208 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℙ)
7675, 30syl 14 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ)
7773, 76zmodcld 10567 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · (2 · 𝑦)) mod 𝑃) ∈ ℕ0)
7810, 77eqeltrid 2316 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑆 ∈ ℕ0)
7978nn0zd 9567 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑆 ∈ ℤ)
80 m1expcl 10784 . . . . . . . . . . . 12 (𝑆 ∈ ℤ → (-1↑𝑆) ∈ ℤ)
8179, 80syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑆) ∈ ℤ)
8281, 79zmulcld 9575 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · 𝑆) ∈ ℤ)
8382, 76zmodcld 10567 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℕ0)
8483nn0cnd 9424 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℂ)
85 elfzelz 10221 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℤ)
8685ad2antll 491 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℤ)
87 zmulcl 9500 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (2 · 𝑥) ∈ ℤ)
8868, 86, 87sylancr 414 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℤ)
8967, 88zmulcld 9575 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
9089, 76zmodcld 10567 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
914, 90eqeltrid 2316 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑅 ∈ ℕ0)
9291nn0zd 9567 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑅 ∈ ℤ)
93 m1expcl 10784 . . . . . . . . . . . 12 (𝑅 ∈ ℤ → (-1↑𝑅) ∈ ℤ)
9492, 93syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) ∈ ℤ)
9594, 92zmulcld 9575 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
9695, 76zmodcld 10567 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
9796nn0cnd 9424 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ)
98 2cnd 9183 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 ∈ ℂ)
9923nnap0d 9156 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 # 0)
100 div11ap 8847 . . . . . . . 8 (((((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℂ ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ↔ (((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃)))
10184, 97, 98, 99, 100syl112anc 1275 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ↔ (((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃)))
102 nnq 9828 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
10332, 102syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℚ)
10432nngt0d 9154 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 0 < 𝑃)
105 eqidd 2230 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) mod 𝑃) = ((-1↑𝑆) mod 𝑃))
10610oveq1i 6011 . . . . . . . . . . 11 (𝑆 mod 𝑃) = (((𝑄 · (2 · 𝑦)) mod 𝑃) mod 𝑃)
107 nnq 9828 . . . . . . . . . . . . 13 ((𝑄 · (2 · 𝑦)) ∈ ℕ → (𝑄 · (2 · 𝑦)) ∈ ℚ)
10827, 107syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑦)) ∈ ℚ)
10931, 102syl 14 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℚ)
110109adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℚ)
111 modqabs2 10580 . . . . . . . . . . . 12 (((𝑄 · (2 · 𝑦)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → (((𝑄 · (2 · 𝑦)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃))
112108, 110, 104, 111syl3anc 1271 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑄 · (2 · 𝑦)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃))
113106, 112eqtrid 2274 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑆 mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃))
11436, 36, 37, 28, 103, 104, 105, 113modqmul12d 10600 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃))
115 eqidd 2230 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) mod 𝑃) = ((-1↑𝑅) mod 𝑃))
1164oveq1i 6011 . . . . . . . . . . 11 (𝑅 mod 𝑃) = (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃)
117 nnq 9828 . . . . . . . . . . . . 13 ((𝑄 · (2 · 𝑥)) ∈ ℕ → (𝑄 · (2 · 𝑥)) ∈ ℚ)
11848, 117syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑥)) ∈ ℚ)
119 modqabs2 10580 . . . . . . . . . . . 12 (((𝑄 · (2 · 𝑥)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
120118, 110, 104, 119syl3anc 1271 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
121116, 120eqtrid 2274 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑅 mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
12253, 53, 54, 49, 110, 104, 115, 121modqmul12d 10600 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
123114, 122eqeq12d 2244 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃) ↔ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃)))
12481, 73zmulcld 9575 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · (𝑄 · (2 · 𝑦))) ∈ ℤ)
12594, 89zmulcld 9575 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (𝑄 · (2 · 𝑥))) ∈ ℤ)
126 moddvds 12310 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((-1↑𝑆) · (𝑄 · (2 · 𝑦))) ∈ ℤ ∧ ((-1↑𝑅) · (𝑄 · (2 · 𝑥))) ∈ ℤ) → ((((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃) ↔ 𝑃 ∥ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))))
12776, 124, 125, 126syl3anc 1271 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃) ↔ 𝑃 ∥ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))))
12867zcnd 9570 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ ℂ)
12981, 72zmulcld 9575 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · (2 · 𝑦)) ∈ ℤ)
130129zcnd 9570 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · (2 · 𝑦)) ∈ ℂ)
13194, 88zmulcld 9575 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (2 · 𝑥)) ∈ ℤ)
132131zcnd 9570 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (2 · 𝑥)) ∈ ℂ)
133128, 130, 132subdid 8560 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) = ((𝑄 · ((-1↑𝑆) · (2 · 𝑦))) − (𝑄 · ((-1↑𝑅) · (2 · 𝑥)))))
13481zcnd 9570 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑆) ∈ ℂ)
13572zcnd 9570 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℂ)
136128, 134, 135mul12d 8298 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · ((-1↑𝑆) · (2 · 𝑦))) = ((-1↑𝑆) · (𝑄 · (2 · 𝑦))))
13794zcnd 9570 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) ∈ ℂ)
13888zcnd 9570 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℂ)
139128, 137, 138mul12d 8298 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · ((-1↑𝑅) · (2 · 𝑥))) = ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))
140136, 139oveq12d 6019 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · ((-1↑𝑆) · (2 · 𝑦))) − (𝑄 · ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥)))))
141133, 140eqtrd 2262 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥)))))
142141breq2d 4095 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) ↔ 𝑃 ∥ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))))
1433adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃𝑄)
144 prmrp 12667 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
14575, 65, 144syl2anc 411 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
146143, 145mpbird 167 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 gcd 𝑄) = 1)
147 prmz 12633 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
14875, 147syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℤ)
149129, 131zsubcld 9574 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) ∈ ℤ)
150 coprmdvds 12614 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) ∈ ℤ) → ((𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))))
151148, 67, 149, 150syl3anc 1271 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))))
152146, 151mpan2d 428 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) → 𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))))
153 dvdsmultr2 12344 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (-1↑𝑅) ∈ ℤ ∧ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) ∈ ℤ) → (𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) → 𝑃 ∥ ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))))))
154148, 94, 149, 153syl3anc 1271 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) → 𝑃 ∥ ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))))))
155137, 130, 132subdid 8560 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑𝑅) · ((-1↑𝑆) · (2 · 𝑦))) − ((-1↑𝑅) · ((-1↑𝑅) · (2 · 𝑥)))))
156 neg1cn 9215 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
157156a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → -1 ∈ ℂ)
158157, 78, 91expaddd 10897 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑(𝑅 + 𝑆)) = ((-1↑𝑅) · (-1↑𝑆)))
159158oveq1d 6016 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) = (((-1↑𝑅) · (-1↑𝑆)) · (2 · 𝑦)))
160137, 134, 135mulassd 8170 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · (-1↑𝑆)) · (2 · 𝑦)) = ((-1↑𝑅) · ((-1↑𝑆) · (2 · 𝑦))))
161159, 160eqtr2d 2263 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · ((-1↑𝑆) · (2 · 𝑦))) = ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)))
162 ax-1cn 8092 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
163 1ap0 8737 . . . . . . . . . . . . . . . . . . . . . . 23 1 # 0
164 divneg2ap 8883 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 # 0) → -(1 / 1) = (1 / -1))
165162, 162, 163, 164mp3an 1371 . . . . . . . . . . . . . . . . . . . . . 22 -(1 / 1) = (1 / -1)
166 1div1e1 8851 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 1) = 1
167166negeqi 8340 . . . . . . . . . . . . . . . . . . . . . 22 -(1 / 1) = -1
168165, 167eqtr3i 2252 . . . . . . . . . . . . . . . . . . . . 21 (1 / -1) = -1
169168oveq1i 6011 . . . . . . . . . . . . . . . . . . . 20 ((1 / -1)↑𝑅) = (-1↑𝑅)
170 neg1ap0 9219 . . . . . . . . . . . . . . . . . . . . . 22 -1 # 0
171170a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → -1 # 0)
172157, 171, 54exprecapd 10903 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((1 / -1)↑𝑅) = (1 / (-1↑𝑅)))
173169, 172eqtr3id 2276 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) = (1 / (-1↑𝑅)))
174173oveq2d 6017 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (-1↑𝑅)) = ((-1↑𝑅) · (1 / (-1↑𝑅))))
175157, 171, 54expap0d 10901 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) # 0)
176137, 175recidapd 8930 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (1 / (-1↑𝑅))) = 1)
177174, 176eqtrd 2262 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (-1↑𝑅)) = 1)
178177oveq1d 6016 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · (-1↑𝑅)) · (2 · 𝑥)) = (1 · (2 · 𝑥)))
179137, 137, 138mulassd 8170 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · (-1↑𝑅)) · (2 · 𝑥)) = ((-1↑𝑅) · ((-1↑𝑅) · (2 · 𝑥))))
180138mullidd 8164 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (1 · (2 · 𝑥)) = (2 · 𝑥))
181178, 179, 1803eqtr3d 2270 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · ((-1↑𝑅) · (2 · 𝑥))) = (2 · 𝑥))
182161, 181oveq12d 6019 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · ((-1↑𝑆) · (2 · 𝑦))) − ((-1↑𝑅) · ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥)))
183155, 182eqtrd 2262 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥)))
184183breq2d 4095 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) ↔ 𝑃 ∥ (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥))))
185 eqcom 2231 . . . . . . . . . . . . . . . . 17 (((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ ((2 · 𝑥) mod 𝑃) = ((-1 · (2 · 𝑦)) mod 𝑃))
186135mulm1d 8556 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1 · (2 · 𝑦)) = -(2 · 𝑦))
187186oveq1d 6016 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1 · (2 · 𝑦)) mod 𝑃) = (-(2 · 𝑦) mod 𝑃))
188187eqeq2d 2241 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((2 · 𝑥) mod 𝑃) = ((-1 · (2 · 𝑦)) mod 𝑃) ↔ ((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃)))
189185, 188bitrid 192 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ ((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃)))
19072znegcld 9571 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → -(2 · 𝑦) ∈ ℤ)
191 moddvds 12310 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ (2 · 𝑥) ∈ ℤ ∧ -(2 · 𝑦) ∈ ℤ) → (((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃) ↔ 𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦))))
19276, 88, 190, 191syl3anc 1271 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃) ↔ 𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦))))
19346, 25nnaddcld 9158 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ∈ ℕ)
19446nnred 9123 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℝ)
19570zred 9569 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ ℝ)
196 oddprm 12782 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
19774, 196syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈ ℕ)
198197nnred 9123 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈ ℝ)
199 elfzle2 10224 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
200199ad2antll 491 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ≤ ((𝑃 − 1) / 2))
201 elfzle2 10224 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ≤ ((𝑃 − 1) / 2))
202201ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ≤ ((𝑃 − 1) / 2))
203194, 195, 198, 198, 200, 202le2addd 8710 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ≤ (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)))
20476nnred 9123 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ)
205 peano2rem 8413 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
206204, 205syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℝ)
207206recnd 8175 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℂ)
2082072halvesd 9357 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
209203, 208breqtrd 4109 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ≤ (𝑃 − 1))
210 peano2zm 9484 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
211 fznn 10285 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 − 1) ∈ ℤ → ((𝑥 + 𝑦) ∈ (1...(𝑃 − 1)) ↔ ((𝑥 + 𝑦) ∈ ℕ ∧ (𝑥 + 𝑦) ≤ (𝑃 − 1))))
212148, 210, 2113syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 + 𝑦) ∈ (1...(𝑃 − 1)) ↔ ((𝑥 + 𝑦) ∈ ℕ ∧ (𝑥 + 𝑦) ≤ (𝑃 − 1))))
213193, 209, 212mpbir2and 950 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ∈ (1...(𝑃 − 1)))
214 fzm1ndvds 12367 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℕ ∧ (𝑥 + 𝑦) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝑥 + 𝑦))
21576, 213, 214syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ∥ (𝑥 + 𝑦))
216 eldifsni 3797 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
21774, 216syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ≠ 2)
218 2prm 12649 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℙ
219 prmrp 12667 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℙ ∧ 2 ∈ ℙ) → ((𝑃 gcd 2) = 1 ↔ 𝑃 ≠ 2))
22075, 218, 219sylancl 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 gcd 2) = 1 ↔ 𝑃 ≠ 2))
221217, 220mpbird 167 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 gcd 2) = 1)
22268a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 ∈ ℤ)
223193nnzd 9568 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ∈ ℤ)
224 coprmdvds 12614 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑥 + 𝑦) ∈ ℤ) → ((𝑃 ∥ (2 · (𝑥 + 𝑦)) ∧ (𝑃 gcd 2) = 1) → 𝑃 ∥ (𝑥 + 𝑦)))
225148, 222, 223, 224syl3anc 1271 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (2 · (𝑥 + 𝑦)) ∧ (𝑃 gcd 2) = 1) → 𝑃 ∥ (𝑥 + 𝑦)))
226221, 225mpan2d 428 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (2 · (𝑥 + 𝑦)) → 𝑃 ∥ (𝑥 + 𝑦)))
227215, 226mtod 667 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ∥ (2 · (𝑥 + 𝑦)))
228138, 135subnegd 8464 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) − -(2 · 𝑦)) = ((2 · 𝑥) + (2 · 𝑦)))
22986zcnd 9570 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℂ)
23070zcnd 9570 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ ℂ)
23198, 229, 230adddid 8171 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · (𝑥 + 𝑦)) = ((2 · 𝑥) + (2 · 𝑦)))
232228, 231eqtr4d 2265 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) − -(2 · 𝑦)) = (2 · (𝑥 + 𝑦)))
233232breq2d 4095 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦)) ↔ 𝑃 ∥ (2 · (𝑥 + 𝑦))))
234227, 233mtbird 677 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦)))
235234pm2.21d 622 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦)) → (2 · 𝑦) = (2 · 𝑥)))
236192, 235sylbid 150 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)))
237189, 236sylbid 150 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)))
238 oveq1 6008 . . . . . . . . . . . . . . . . . 18 ((-1↑(𝑅 + 𝑆)) = -1 → ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) = (-1 · (2 · 𝑦)))
239238oveq1d 6016 . . . . . . . . . . . . . . . . 17 ((-1↑(𝑅 + 𝑆)) = -1 → (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((-1 · (2 · 𝑦)) mod 𝑃))
240239eqeq1d 2238 . . . . . . . . . . . . . . . 16 ((-1↑(𝑅 + 𝑆)) = -1 → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ ((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃)))
241240imbi1d 231 . . . . . . . . . . . . . . 15 ((-1↑(𝑅 + 𝑆)) = -1 → (((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)) ↔ (((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥))))
242237, 241syl5ibrcom 157 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) = -1 → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥))))
243135mullidd 8164 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (1 · (2 · 𝑦)) = (2 · 𝑦))
244243oveq1d 6016 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑦) mod 𝑃))
245 nnq 9828 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑦) ∈ ℕ → (2 · 𝑦) ∈ ℚ)
24626, 245syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℚ)
247 nnmulcl 9131 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (2 · 𝑦) ∈ ℕ)
24822, 25, 247sylancr 414 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℕ)
249248nnnn0d 9422 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℕ0)
250249nn0ge0d 9425 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ (2 · 𝑦))
251 2re 9180 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
252251a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 ∈ ℝ)
253 2pos 9201 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
254253a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 0 < 2)
255 lemuldiv2 9029 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑦) ≤ (𝑃 − 1) ↔ 𝑦 ≤ ((𝑃 − 1) / 2)))
256195, 206, 252, 254, 255syl112anc 1275 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑦) ≤ (𝑃 − 1) ↔ 𝑦 ≤ ((𝑃 − 1) / 2)))
257202, 256mpbird 167 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ≤ (𝑃 − 1))
258 zltlem1 9504 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑦) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 · 𝑦) < 𝑃 ↔ (2 · 𝑦) ≤ (𝑃 − 1)))
25972, 148, 258syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑦) < 𝑃 ↔ (2 · 𝑦) ≤ (𝑃 − 1)))
260257, 259mpbird 167 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) < 𝑃)
261 modqid 10571 . . . . . . . . . . . . . . . . . . 19 ((((2 · 𝑦) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (2 · 𝑦) ∧ (2 · 𝑦) < 𝑃)) → ((2 · 𝑦) mod 𝑃) = (2 · 𝑦))
262246, 110, 250, 260, 261syl22anc 1272 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑦) mod 𝑃) = (2 · 𝑦))
263244, 262eqtrd 2262 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((1 · (2 · 𝑦)) mod 𝑃) = (2 · 𝑦))
264 nnq 9828 . . . . . . . . . . . . . . . . . . 19 ((2 · 𝑥) ∈ ℕ → (2 · 𝑥) ∈ ℚ)
26547, 264syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℚ)
266 nnmulcl 9131 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
26722, 46, 266sylancr 414 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℕ)
268267nnnn0d 9422 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℕ0)
269268nn0ge0d 9425 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ (2 · 𝑥))
270 lemuldiv2 9029 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
271194, 206, 252, 254, 270syl112anc 1275 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
272200, 271mpbird 167 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ≤ (𝑃 − 1))
273 zltlem1 9504 . . . . . . . . . . . . . . . . . . . 20 (((2 · 𝑥) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 · 𝑥) < 𝑃 ↔ (2 · 𝑥) ≤ (𝑃 − 1)))
27488, 148, 273syl2anc 411 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) < 𝑃 ↔ (2 · 𝑥) ≤ (𝑃 − 1)))
275272, 274mpbird 167 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) < 𝑃)
276 modqid 10571 . . . . . . . . . . . . . . . . . 18 ((((2 · 𝑥) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (2 · 𝑥) ∧ (2 · 𝑥) < 𝑃)) → ((2 · 𝑥) mod 𝑃) = (2 · 𝑥))
277265, 110, 269, 275, 276syl22anc 1272 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) mod 𝑃) = (2 · 𝑥))
278263, 277eqeq12d 2244 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ (2 · 𝑦) = (2 · 𝑥)))
279278biimpd 144 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)))
280 oveq1 6008 . . . . . . . . . . . . . . . . . 18 ((-1↑(𝑅 + 𝑆)) = 1 → ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) = (1 · (2 · 𝑦)))
281280oveq1d 6016 . . . . . . . . . . . . . . . . 17 ((-1↑(𝑅 + 𝑆)) = 1 → (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((1 · (2 · 𝑦)) mod 𝑃))
282281eqeq1d 2238 . . . . . . . . . . . . . . . 16 ((-1↑(𝑅 + 𝑆)) = 1 → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ ((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃)))
283282imbi1d 231 . . . . . . . . . . . . . . 15 ((-1↑(𝑅 + 𝑆)) = 1 → (((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)) ↔ (((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥))))
284279, 283syl5ibrcom 157 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) = 1 → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥))))
28591, 78nn0addcld 9426 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑅 + 𝑆) ∈ ℕ0)
286285nn0zd 9567 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑅 + 𝑆) ∈ ℤ)
287 m1expcl2 10783 . . . . . . . . . . . . . . 15 ((𝑅 + 𝑆) ∈ ℤ → (-1↑(𝑅 + 𝑆)) ∈ {-1, 1})
288 elpri 3689 . . . . . . . . . . . . . . 15 ((-1↑(𝑅 + 𝑆)) ∈ {-1, 1} → ((-1↑(𝑅 + 𝑆)) = -1 ∨ (-1↑(𝑅 + 𝑆)) = 1))
289286, 287, 2883syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) = -1 ∨ (-1↑(𝑅 + 𝑆)) = 1))
290242, 284, 289mpjaod 723 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)))
291 zexpcl 10776 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℤ ∧ (𝑅 + 𝑆) ∈ ℕ0) → (-1↑(𝑅 + 𝑆)) ∈ ℤ)
29217, 285, 291sylancr 414 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑(𝑅 + 𝑆)) ∈ ℤ)
293292, 72zmulcld 9575 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) ∈ ℤ)
294 moddvds 12310 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) ∈ ℤ ∧ (2 · 𝑥) ∈ ℤ) → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ 𝑃 ∥ (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥))))
29576, 293, 88, 294syl3anc 1271 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ 𝑃 ∥ (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥))))
296230, 229, 98, 99mulcanapd 8808 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑦) = (2 · 𝑥) ↔ 𝑦 = 𝑥))
297290, 295, 2963imtr3d 202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥)) → 𝑦 = 𝑥))
298184, 297sylbid 150 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) → 𝑦 = 𝑥))
299152, 154, 2983syld 57 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) → 𝑦 = 𝑥))
300142, 299sylbird 170 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥)))) → 𝑦 = 𝑥))
301127, 300sylbid 150 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃) → 𝑦 = 𝑥))
302123, 301sylbid 150 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃) → 𝑦 = 𝑥))
303101, 302sylbid 150 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → 𝑦 = 𝑥))
30463, 303sylbid 150 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥))
305304ralrimivva 2612 . . . 4 (𝜑 → ∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑥 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥))
306 nfmpt1 4177 . . . . . . . . . 10 𝑥(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
3075, 306nfcxfr 2369 . . . . . . . . 9 𝑥𝑀
308 nfcv 2372 . . . . . . . . 9 𝑥𝑦
309307, 308nffv 5637 . . . . . . . 8 𝑥(𝑀𝑦)
310 nfcv 2372 . . . . . . . . 9 𝑥𝑧
311307, 310nffv 5637 . . . . . . . 8 𝑥(𝑀𝑧)
312309, 311nfeq 2380 . . . . . . 7 𝑥(𝑀𝑦) = (𝑀𝑧)
313 nfv 1574 . . . . . . 7 𝑥 𝑦 = 𝑧
314312, 313nfim 1618 . . . . . 6 𝑥((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧)
315 nfv 1574 . . . . . 6 𝑧((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥)
316 fveq2 5627 . . . . . . . 8 (𝑧 = 𝑥 → (𝑀𝑧) = (𝑀𝑥))
317316eqeq2d 2241 . . . . . . 7 (𝑧 = 𝑥 → ((𝑀𝑦) = (𝑀𝑧) ↔ (𝑀𝑦) = (𝑀𝑥)))
318 equequ2 1759 . . . . . . 7 (𝑧 = 𝑥 → (𝑦 = 𝑧𝑦 = 𝑥))
319317, 318imbi12d 234 . . . . . 6 (𝑧 = 𝑥 → (((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧) ↔ ((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥)))
320314, 315, 319cbvralw 2758 . . . . 5 (∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥))
321320ralbii 2536 . . . 4 (∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑥 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥))
322305, 321sylibr 134 . . 3 (𝜑 → ∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧))
323 dff13 5892 . . 3 (𝑀:(1...((𝑃 − 1) / 2))–1-1→(1...((𝑃 − 1) / 2)) ↔ (𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)) ∧ ∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧)))
3246, 322, 323sylanbrc 417 . 2 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1→(1...((𝑃 − 1) / 2)))
325 1zzd 9473 . . . . 5 (𝜑 → 1 ∈ ℤ)
3261, 196syl 14 . . . . . 6 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
327326nnzd 9568 . . . . 5 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
328325, 327fzfigd 10653 . . . 4 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
329 enrefg 6915 . . . 4 ((1...((𝑃 − 1) / 2)) ∈ Fin → (1...((𝑃 − 1) / 2)) ≈ (1...((𝑃 − 1) / 2)))
330328, 329syl 14 . . 3 (𝜑 → (1...((𝑃 − 1) / 2)) ≈ (1...((𝑃 − 1) / 2)))
331 f1finf1o 7114 . . 3 (((1...((𝑃 − 1) / 2)) ≈ (1...((𝑃 − 1) / 2)) ∧ (1...((𝑃 − 1) / 2)) ∈ Fin) → (𝑀:(1...((𝑃 − 1) / 2))–1-1→(1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))))
332330, 328, 331syl2anc 411 . 2 (𝜑 → (𝑀:(1...((𝑃 − 1) / 2))–1-1→(1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))))
333324, 332mpbid 147 1 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713   = wceq 1395  wcel 2200  wne 2400  wral 2508  Vcvv 2799  cdif 3194  {csn 3666  {cpr 3667   class class class wbr 4083  cmpt 4145  wf 5314  1-1wf1 5315  1-1-ontowf1o 5317  cfv 5318  (class class class)co 6001  cen 6885  Fincfn 6887  cc 7997  cr 7998  0cc0 7999  1c1 8000   + caddc 8002   · cmul 8004   < clt 8181  cle 8182  cmin 8317  -cneg 8318   # cap 8728   / cdiv 8819  cn 9110  2c2 9161  0cn0 9369  cz 9446  cq 9814  ...cfz 10204   mod cmo 10544  cexp 10760  cdvds 12298   gcd cgcd 12474  cprime 12629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117  ax-arch 8118  ax-caucvg 8119
This theorem depends on definitions:  df-bi 117  df-stab 836  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-2o 6563  df-er 6680  df-en 6888  df-fin 6890  df-sup 7151  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-3 9170  df-4 9171  df-n0 9370  df-z 9447  df-uz 9723  df-q 9815  df-rp 9850  df-fz 10205  df-fzo 10339  df-fl 10490  df-mod 10545  df-seqfrec 10670  df-exp 10761  df-cj 11353  df-re 11354  df-im 11355  df-rsqrt 11509  df-abs 11510  df-dvds 12299  df-gcd 12475  df-prm 12630
This theorem is referenced by:  lgseisenlem3  15751
  Copyright terms: Public domain W3C validator