ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lgseisenlem2 GIF version

Theorem lgseisenlem2 15581
Description: Lemma for lgseisen 15584. The function 𝑀 is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 17-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgseisen.4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
lgseisen.5 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
lgseisen.6 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
Assertion
Ref Expression
lgseisenlem2 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
Distinct variable groups:   𝑥,𝑦,𝑃   𝜑,𝑥,𝑦   𝑦,𝑀   𝑥,𝑄,𝑦   𝑥,𝑆
Allowed substitution hints:   𝑅(𝑥,𝑦)   𝑆(𝑦)   𝑀(𝑥)

Proof of Theorem lgseisenlem2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 lgseisen.1 . . . 4 (𝜑𝑃 ∈ (ℙ ∖ {2}))
2 lgseisen.2 . . . 4 (𝜑𝑄 ∈ (ℙ ∖ {2}))
3 lgseisen.3 . . . 4 (𝜑𝑃𝑄)
4 lgseisen.4 . . . 4 𝑅 = ((𝑄 · (2 · 𝑥)) mod 𝑃)
5 lgseisen.5 . . . 4 𝑀 = (𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
61, 2, 3, 4, 5lgseisenlem1 15580 . . 3 (𝜑𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)))
7 oveq2 5954 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → (2 · 𝑥) = (2 · 𝑦))
87oveq2d 5962 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → (𝑄 · (2 · 𝑥)) = (𝑄 · (2 · 𝑦)))
98oveq1d 5961 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑄 · (2 · 𝑥)) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃))
10 lgseisen.6 . . . . . . . . . . . . 13 𝑆 = ((𝑄 · (2 · 𝑦)) mod 𝑃)
119, 4, 103eqtr4g 2263 . . . . . . . . . . . 12 (𝑥 = 𝑦𝑅 = 𝑆)
1211oveq2d 5962 . . . . . . . . . . 11 (𝑥 = 𝑦 → (-1↑𝑅) = (-1↑𝑆))
1312, 11oveq12d 5964 . . . . . . . . . 10 (𝑥 = 𝑦 → ((-1↑𝑅) · 𝑅) = ((-1↑𝑆) · 𝑆))
1413oveq1d 5961 . . . . . . . . 9 (𝑥 = 𝑦 → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑆) · 𝑆) mod 𝑃))
1514oveq1d 5961 . . . . . . . 8 (𝑥 = 𝑦 → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) = ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2))
16 simprl 529 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ (1...((𝑃 − 1) / 2)))
17 neg1z 9406 . . . . . . . . . . . . 13 -1 ∈ ℤ
182eldifad 3177 . . . . . . . . . . . . . . . . . . 19 (𝜑𝑄 ∈ ℙ)
19 prmnn 12465 . . . . . . . . . . . . . . . . . . 19 (𝑄 ∈ ℙ → 𝑄 ∈ ℕ)
2018, 19syl 14 . . . . . . . . . . . . . . . . . 18 (𝜑𝑄 ∈ ℕ)
2120adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ ℕ)
22 2nn 9200 . . . . . . . . . . . . . . . . . . 19 2 ∈ ℕ
2322a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 ∈ ℕ)
24 elfznn 10178 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℕ)
2524ad2antrl 490 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ ℕ)
2623, 25nnmulcld 9087 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℕ)
2721, 26nnmulcld 9087 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑦)) ∈ ℕ)
2827nnzd 9496 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑦)) ∈ ℤ)
291eldifad 3177 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ ℙ)
30 prmnn 12465 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
3129, 30syl 14 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ ℕ)
3231adantr 276 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ)
3328, 32zmodcld 10492 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · (2 · 𝑦)) mod 𝑃) ∈ ℕ0)
3410, 33eqeltrid 2292 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑆 ∈ ℕ0)
35 zexpcl 10701 . . . . . . . . . . . . 13 ((-1 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (-1↑𝑆) ∈ ℤ)
3617, 34, 35sylancr 414 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑆) ∈ ℤ)
3734nn0zd 9495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑆 ∈ ℤ)
3836, 37zmulcld 9503 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · 𝑆) ∈ ℤ)
3938, 32zmodcld 10492 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℕ0)
4039nn0zd 9495 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℤ)
41 znq 9747 . . . . . . . . 9 (((((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℤ ∧ 2 ∈ ℕ) → ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) ∈ ℚ)
4240, 22, 41sylancl 413 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) ∈ ℚ)
435, 15, 16, 42fvmptd3 5675 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑀𝑦) = ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2))
44 simprr 531 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ (1...((𝑃 − 1) / 2)))
45 elfznn 10178 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℕ)
4645ad2antll 491 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℕ)
4723, 46nnmulcld 9087 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℕ)
4821, 47nnmulcld 9087 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑥)) ∈ ℕ)
4948nnzd 9496 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
5049, 32zmodcld 10492 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
514, 50eqeltrid 2292 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑅 ∈ ℕ0)
52 zexpcl 10701 . . . . . . . . . . . . . 14 ((-1 ∈ ℤ ∧ 𝑅 ∈ ℕ0) → (-1↑𝑅) ∈ ℤ)
5317, 51, 52sylancr 414 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) ∈ ℤ)
5451nn0zd 9495 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑅 ∈ ℤ)
5553, 54zmulcld 9503 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
5655, 32zmodcld 10492 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
5756nn0zd 9495 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ)
58 znq 9747 . . . . . . . . . 10 (((((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℤ ∧ 2 ∈ ℕ) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℚ)
5957, 22, 58sylancl 413 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ ℚ)
6059elexd 2785 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ V)
615fvmpt2 5665 . . . . . . . 8 ((𝑥 ∈ (1...((𝑃 − 1) / 2)) ∧ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ∈ V) → (𝑀𝑥) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
6244, 60, 61syl2anc 411 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑀𝑥) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
6343, 62eqeq12d 2220 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑀𝑦) = (𝑀𝑥) ↔ ((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2)))
642adantr 276 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ (ℙ ∖ {2}))
6564eldifad 3177 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ ℙ)
66 prmz 12466 . . . . . . . . . . . . . . . . 17 (𝑄 ∈ ℙ → 𝑄 ∈ ℤ)
6765, 66syl 14 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ ℤ)
68 2z 9402 . . . . . . . . . . . . . . . . 17 2 ∈ ℤ
69 elfzelz 10149 . . . . . . . . . . . . . . . . . 18 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ∈ ℤ)
7069ad2antrl 490 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ ℤ)
71 zmulcl 9428 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (2 · 𝑦) ∈ ℤ)
7268, 70, 71sylancr 414 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℤ)
7367, 72zmulcld 9503 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑦)) ∈ ℤ)
741adantr 276 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ (ℙ ∖ {2}))
7574eldifad 3177 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℙ)
7675, 30syl 14 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℕ)
7773, 76zmodcld 10492 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · (2 · 𝑦)) mod 𝑃) ∈ ℕ0)
7810, 77eqeltrid 2292 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑆 ∈ ℕ0)
7978nn0zd 9495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑆 ∈ ℤ)
80 m1expcl 10709 . . . . . . . . . . . 12 (𝑆 ∈ ℤ → (-1↑𝑆) ∈ ℤ)
8179, 80syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑆) ∈ ℤ)
8281, 79zmulcld 9503 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · 𝑆) ∈ ℤ)
8382, 76zmodcld 10492 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℕ0)
8483nn0cnd 9352 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℂ)
85 elfzelz 10149 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ∈ ℤ)
8685ad2antll 491 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℤ)
87 zmulcl 9428 . . . . . . . . . . . . . . . . 17 ((2 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (2 · 𝑥) ∈ ℤ)
8868, 86, 87sylancr 414 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℤ)
8967, 88zmulcld 9503 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑥)) ∈ ℤ)
9089, 76zmodcld 10492 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · (2 · 𝑥)) mod 𝑃) ∈ ℕ0)
914, 90eqeltrid 2292 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑅 ∈ ℕ0)
9291nn0zd 9495 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑅 ∈ ℤ)
93 m1expcl 10709 . . . . . . . . . . . 12 (𝑅 ∈ ℤ → (-1↑𝑅) ∈ ℤ)
9492, 93syl 14 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) ∈ ℤ)
9594, 92zmulcld 9503 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · 𝑅) ∈ ℤ)
9695, 76zmodcld 10492 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℕ0)
9796nn0cnd 9352 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ)
98 2cnd 9111 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 ∈ ℂ)
9923nnap0d 9084 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 # 0)
100 div11ap 8775 . . . . . . . 8 (((((-1↑𝑆) · 𝑆) mod 𝑃) ∈ ℂ ∧ (((-1↑𝑅) · 𝑅) mod 𝑃) ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0)) → (((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ↔ (((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃)))
10184, 97, 98, 99, 100syl112anc 1254 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) ↔ (((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃)))
102 nnq 9756 . . . . . . . . . . 11 (𝑃 ∈ ℕ → 𝑃 ∈ ℚ)
10332, 102syl 14 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℚ)
10432nngt0d 9082 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 0 < 𝑃)
105 eqidd 2206 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) mod 𝑃) = ((-1↑𝑆) mod 𝑃))
10610oveq1i 5956 . . . . . . . . . . 11 (𝑆 mod 𝑃) = (((𝑄 · (2 · 𝑦)) mod 𝑃) mod 𝑃)
107 nnq 9756 . . . . . . . . . . . . 13 ((𝑄 · (2 · 𝑦)) ∈ ℕ → (𝑄 · (2 · 𝑦)) ∈ ℚ)
10827, 107syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑦)) ∈ ℚ)
10931, 102syl 14 . . . . . . . . . . . . 13 (𝜑𝑃 ∈ ℚ)
110109adantr 276 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℚ)
111 modqabs2 10505 . . . . . . . . . . . 12 (((𝑄 · (2 · 𝑦)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → (((𝑄 · (2 · 𝑦)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃))
112108, 110, 104, 111syl3anc 1250 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑄 · (2 · 𝑦)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃))
113106, 112eqtrid 2250 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑆 mod 𝑃) = ((𝑄 · (2 · 𝑦)) mod 𝑃))
11436, 36, 37, 28, 103, 104, 105, 113modqmul12d 10525 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃))
115 eqidd 2206 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) mod 𝑃) = ((-1↑𝑅) mod 𝑃))
1164oveq1i 5956 . . . . . . . . . . 11 (𝑅 mod 𝑃) = (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃)
117 nnq 9756 . . . . . . . . . . . . 13 ((𝑄 · (2 · 𝑥)) ∈ ℕ → (𝑄 · (2 · 𝑥)) ∈ ℚ)
11848, 117syl 14 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (2 · 𝑥)) ∈ ℚ)
119 modqabs2 10505 . . . . . . . . . . . 12 (((𝑄 · (2 · 𝑥)) ∈ ℚ ∧ 𝑃 ∈ ℚ ∧ 0 < 𝑃) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
120118, 110, 104, 119syl3anc 1250 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑄 · (2 · 𝑥)) mod 𝑃) mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
121116, 120eqtrid 2250 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑅 mod 𝑃) = ((𝑄 · (2 · 𝑥)) mod 𝑃))
12253, 53, 54, 49, 110, 104, 115, 121modqmul12d 10525 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · 𝑅) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃))
123114, 122eqeq12d 2220 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃) ↔ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃)))
12481, 73zmulcld 9503 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · (𝑄 · (2 · 𝑦))) ∈ ℤ)
12594, 89zmulcld 9503 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (𝑄 · (2 · 𝑥))) ∈ ℤ)
126 moddvds 12143 . . . . . . . . . 10 ((𝑃 ∈ ℕ ∧ ((-1↑𝑆) · (𝑄 · (2 · 𝑦))) ∈ ℤ ∧ ((-1↑𝑅) · (𝑄 · (2 · 𝑥))) ∈ ℤ) → ((((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃) ↔ 𝑃 ∥ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))))
12776, 124, 125, 126syl3anc 1250 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃) ↔ 𝑃 ∥ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))))
12867zcnd 9498 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑄 ∈ ℂ)
12981, 72zmulcld 9503 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · (2 · 𝑦)) ∈ ℤ)
130129zcnd 9498 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑆) · (2 · 𝑦)) ∈ ℂ)
13194, 88zmulcld 9503 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (2 · 𝑥)) ∈ ℤ)
132131zcnd 9498 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (2 · 𝑥)) ∈ ℂ)
133128, 130, 132subdid 8488 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) = ((𝑄 · ((-1↑𝑆) · (2 · 𝑦))) − (𝑄 · ((-1↑𝑅) · (2 · 𝑥)))))
13481zcnd 9498 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑆) ∈ ℂ)
13572zcnd 9498 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℂ)
136128, 134, 135mul12d 8226 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · ((-1↑𝑆) · (2 · 𝑦))) = ((-1↑𝑆) · (𝑄 · (2 · 𝑦))))
13794zcnd 9498 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) ∈ ℂ)
13888zcnd 9498 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℂ)
139128, 137, 138mul12d 8226 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · ((-1↑𝑅) · (2 · 𝑥))) = ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))
140136, 139oveq12d 5964 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑄 · ((-1↑𝑆) · (2 · 𝑦))) − (𝑄 · ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥)))))
141133, 140eqtrd 2238 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥)))))
142141breq2d 4057 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) ↔ 𝑃 ∥ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥))))))
1433adantr 276 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃𝑄)
144 prmrp 12500 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
14575, 65, 144syl2anc 411 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 gcd 𝑄) = 1 ↔ 𝑃𝑄))
146143, 145mpbird 167 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 gcd 𝑄) = 1)
147 prmz 12466 . . . . . . . . . . . . . 14 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
14875, 147syl 14 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℤ)
149129, 131zsubcld 9502 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) ∈ ℤ)
150 coprmdvds 12447 . . . . . . . . . . . . 13 ((𝑃 ∈ ℤ ∧ 𝑄 ∈ ℤ ∧ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) ∈ ℤ) → ((𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))))
151148, 67, 149, 150syl3anc 1250 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) ∧ (𝑃 gcd 𝑄) = 1) → 𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))))
152146, 151mpan2d 428 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) → 𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))))
153 dvdsmultr2 12177 . . . . . . . . . . . 12 ((𝑃 ∈ ℤ ∧ (-1↑𝑅) ∈ ℤ ∧ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) ∈ ℤ) → (𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) → 𝑃 ∥ ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))))))
154148, 94, 149, 153syl3anc 1250 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))) → 𝑃 ∥ ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥))))))
155137, 130, 132subdid 8488 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑𝑅) · ((-1↑𝑆) · (2 · 𝑦))) − ((-1↑𝑅) · ((-1↑𝑅) · (2 · 𝑥)))))
156 neg1cn 9143 . . . . . . . . . . . . . . . . . . 19 -1 ∈ ℂ
157156a1i 9 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → -1 ∈ ℂ)
158157, 78, 91expaddd 10822 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑(𝑅 + 𝑆)) = ((-1↑𝑅) · (-1↑𝑆)))
159158oveq1d 5961 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) = (((-1↑𝑅) · (-1↑𝑆)) · (2 · 𝑦)))
160137, 134, 135mulassd 8098 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · (-1↑𝑆)) · (2 · 𝑦)) = ((-1↑𝑅) · ((-1↑𝑆) · (2 · 𝑦))))
161159, 160eqtr2d 2239 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · ((-1↑𝑆) · (2 · 𝑦))) = ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)))
162 ax-1cn 8020 . . . . . . . . . . . . . . . . . . . . . . 23 1 ∈ ℂ
163 1ap0 8665 . . . . . . . . . . . . . . . . . . . . . . 23 1 # 0
164 divneg2ap 8811 . . . . . . . . . . . . . . . . . . . . . . 23 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 # 0) → -(1 / 1) = (1 / -1))
165162, 162, 163, 164mp3an 1350 . . . . . . . . . . . . . . . . . . . . . 22 -(1 / 1) = (1 / -1)
166 1div1e1 8779 . . . . . . . . . . . . . . . . . . . . . . 23 (1 / 1) = 1
167166negeqi 8268 . . . . . . . . . . . . . . . . . . . . . 22 -(1 / 1) = -1
168165, 167eqtr3i 2228 . . . . . . . . . . . . . . . . . . . . 21 (1 / -1) = -1
169168oveq1i 5956 . . . . . . . . . . . . . . . . . . . 20 ((1 / -1)↑𝑅) = (-1↑𝑅)
170 neg1ap0 9147 . . . . . . . . . . . . . . . . . . . . . 22 -1 # 0
171170a1i 9 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → -1 # 0)
172157, 171, 54exprecapd 10828 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((1 / -1)↑𝑅) = (1 / (-1↑𝑅)))
173169, 172eqtr3id 2252 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) = (1 / (-1↑𝑅)))
174173oveq2d 5962 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (-1↑𝑅)) = ((-1↑𝑅) · (1 / (-1↑𝑅))))
175157, 171, 54expap0d 10826 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑𝑅) # 0)
176137, 175recidapd 8858 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (1 / (-1↑𝑅))) = 1)
177174, 176eqtrd 2238 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (-1↑𝑅)) = 1)
178177oveq1d 5961 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · (-1↑𝑅)) · (2 · 𝑥)) = (1 · (2 · 𝑥)))
179137, 137, 138mulassd 8098 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · (-1↑𝑅)) · (2 · 𝑥)) = ((-1↑𝑅) · ((-1↑𝑅) · (2 · 𝑥))))
180138mullidd 8092 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (1 · (2 · 𝑥)) = (2 · 𝑥))
181178, 179, 1803eqtr3d 2246 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · ((-1↑𝑅) · (2 · 𝑥))) = (2 · 𝑥))
182161, 181oveq12d 5964 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1↑𝑅) · ((-1↑𝑆) · (2 · 𝑦))) − ((-1↑𝑅) · ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥)))
183155, 182eqtrd 2238 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) = (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥)))
184183breq2d 4057 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) ↔ 𝑃 ∥ (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥))))
185 eqcom 2207 . . . . . . . . . . . . . . . . 17 (((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ ((2 · 𝑥) mod 𝑃) = ((-1 · (2 · 𝑦)) mod 𝑃))
186135mulm1d 8484 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1 · (2 · 𝑦)) = -(2 · 𝑦))
187186oveq1d 5961 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1 · (2 · 𝑦)) mod 𝑃) = (-(2 · 𝑦) mod 𝑃))
188187eqeq2d 2217 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((2 · 𝑥) mod 𝑃) = ((-1 · (2 · 𝑦)) mod 𝑃) ↔ ((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃)))
189185, 188bitrid 192 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ ((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃)))
19072znegcld 9499 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → -(2 · 𝑦) ∈ ℤ)
191 moddvds 12143 . . . . . . . . . . . . . . . . . 18 ((𝑃 ∈ ℕ ∧ (2 · 𝑥) ∈ ℤ ∧ -(2 · 𝑦) ∈ ℤ) → (((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃) ↔ 𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦))))
19276, 88, 190, 191syl3anc 1250 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃) ↔ 𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦))))
19346, 25nnaddcld 9086 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ∈ ℕ)
19446nnred 9051 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℝ)
19570zred 9497 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ ℝ)
196 oddprm 12615 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ (ℙ ∖ {2}) → ((𝑃 − 1) / 2) ∈ ℕ)
19774, 196syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈ ℕ)
198197nnred 9051 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 − 1) / 2) ∈ ℝ)
199 elfzle2 10152 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 ∈ (1...((𝑃 − 1) / 2)) → 𝑥 ≤ ((𝑃 − 1) / 2))
200199ad2antll 491 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ≤ ((𝑃 − 1) / 2))
201 elfzle2 10152 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (1...((𝑃 − 1) / 2)) → 𝑦 ≤ ((𝑃 − 1) / 2))
202201ad2antrl 490 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ≤ ((𝑃 − 1) / 2))
203194, 195, 198, 198, 200, 202le2addd 8638 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ≤ (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)))
20476nnred 9051 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ∈ ℝ)
205 peano2rem 8341 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
206204, 205syl 14 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℝ)
207206recnd 8103 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 − 1) ∈ ℂ)
2082072halvesd 9285 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
209203, 208breqtrd 4071 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ≤ (𝑃 − 1))
210 peano2zm 9412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
211 fznn 10213 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 − 1) ∈ ℤ → ((𝑥 + 𝑦) ∈ (1...(𝑃 − 1)) ↔ ((𝑥 + 𝑦) ∈ ℕ ∧ (𝑥 + 𝑦) ≤ (𝑃 − 1))))
212148, 210, 2113syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑥 + 𝑦) ∈ (1...(𝑃 − 1)) ↔ ((𝑥 + 𝑦) ∈ ℕ ∧ (𝑥 + 𝑦) ≤ (𝑃 − 1))))
213193, 209, 212mpbir2and 947 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ∈ (1...(𝑃 − 1)))
214 fzm1ndvds 12200 . . . . . . . . . . . . . . . . . . . . 21 ((𝑃 ∈ ℕ ∧ (𝑥 + 𝑦) ∈ (1...(𝑃 − 1))) → ¬ 𝑃 ∥ (𝑥 + 𝑦))
21576, 213, 214syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ∥ (𝑥 + 𝑦))
216 eldifsni 3762 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
21774, 216syl 14 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑃 ≠ 2)
218 2prm 12482 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℙ
219 prmrp 12500 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑃 ∈ ℙ ∧ 2 ∈ ℙ) → ((𝑃 gcd 2) = 1 ↔ 𝑃 ≠ 2))
22075, 218, 219sylancl 413 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 gcd 2) = 1 ↔ 𝑃 ≠ 2))
221217, 220mpbird 167 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 gcd 2) = 1)
22268a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 ∈ ℤ)
223193nnzd 9496 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑥 + 𝑦) ∈ ℤ)
224 coprmdvds 12447 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑃 ∈ ℤ ∧ 2 ∈ ℤ ∧ (𝑥 + 𝑦) ∈ ℤ) → ((𝑃 ∥ (2 · (𝑥 + 𝑦)) ∧ (𝑃 gcd 2) = 1) → 𝑃 ∥ (𝑥 + 𝑦)))
225148, 222, 223, 224syl3anc 1250 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑃 ∥ (2 · (𝑥 + 𝑦)) ∧ (𝑃 gcd 2) = 1) → 𝑃 ∥ (𝑥 + 𝑦)))
226221, 225mpan2d 428 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (2 · (𝑥 + 𝑦)) → 𝑃 ∥ (𝑥 + 𝑦)))
227215, 226mtod 665 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ∥ (2 · (𝑥 + 𝑦)))
228138, 135subnegd 8392 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) − -(2 · 𝑦)) = ((2 · 𝑥) + (2 · 𝑦)))
22986zcnd 9498 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑥 ∈ ℂ)
23070zcnd 9498 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 𝑦 ∈ ℂ)
23198, 229, 230adddid 8099 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · (𝑥 + 𝑦)) = ((2 · 𝑥) + (2 · 𝑦)))
232228, 231eqtr4d 2241 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) − -(2 · 𝑦)) = (2 · (𝑥 + 𝑦)))
233232breq2d 4057 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦)) ↔ 𝑃 ∥ (2 · (𝑥 + 𝑦))))
234227, 233mtbird 675 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ¬ 𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦)))
235234pm2.21d 620 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((2 · 𝑥) − -(2 · 𝑦)) → (2 · 𝑦) = (2 · 𝑥)))
236192, 235sylbid 150 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((2 · 𝑥) mod 𝑃) = (-(2 · 𝑦) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)))
237189, 236sylbid 150 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)))
238 oveq1 5953 . . . . . . . . . . . . . . . . . 18 ((-1↑(𝑅 + 𝑆)) = -1 → ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) = (-1 · (2 · 𝑦)))
239238oveq1d 5961 . . . . . . . . . . . . . . . . 17 ((-1↑(𝑅 + 𝑆)) = -1 → (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((-1 · (2 · 𝑦)) mod 𝑃))
240239eqeq1d 2214 . . . . . . . . . . . . . . . 16 ((-1↑(𝑅 + 𝑆)) = -1 → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ ((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃)))
241240imbi1d 231 . . . . . . . . . . . . . . 15 ((-1↑(𝑅 + 𝑆)) = -1 → (((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)) ↔ (((-1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥))))
242237, 241syl5ibrcom 157 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) = -1 → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥))))
243135mullidd 8092 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (1 · (2 · 𝑦)) = (2 · 𝑦))
244243oveq1d 5961 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑦) mod 𝑃))
245 nnq 9756 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑦) ∈ ℕ → (2 · 𝑦) ∈ ℚ)
24626, 245syl 14 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℚ)
247 nnmulcl 9059 . . . . . . . . . . . . . . . . . . . . . 22 ((2 ∈ ℕ ∧ 𝑦 ∈ ℕ) → (2 · 𝑦) ∈ ℕ)
24822, 25, 247sylancr 414 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℕ)
249248nnnn0d 9350 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ∈ ℕ0)
250249nn0ge0d 9353 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ (2 · 𝑦))
251 2re 9108 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
252251a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 2 ∈ ℝ)
253 2pos 9129 . . . . . . . . . . . . . . . . . . . . . . 23 0 < 2
254253a1i 9 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 0 < 2)
255 lemuldiv2 8957 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑦) ≤ (𝑃 − 1) ↔ 𝑦 ≤ ((𝑃 − 1) / 2)))
256195, 206, 252, 254, 255syl112anc 1254 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑦) ≤ (𝑃 − 1) ↔ 𝑦 ≤ ((𝑃 − 1) / 2)))
257202, 256mpbird 167 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) ≤ (𝑃 − 1))
258 zltlem1 9432 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑦) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 · 𝑦) < 𝑃 ↔ (2 · 𝑦) ≤ (𝑃 − 1)))
25972, 148, 258syl2anc 411 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑦) < 𝑃 ↔ (2 · 𝑦) ≤ (𝑃 − 1)))
260257, 259mpbird 167 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑦) < 𝑃)
261 modqid 10496 . . . . . . . . . . . . . . . . . . 19 ((((2 · 𝑦) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (2 · 𝑦) ∧ (2 · 𝑦) < 𝑃)) → ((2 · 𝑦) mod 𝑃) = (2 · 𝑦))
262246, 110, 250, 260, 261syl22anc 1251 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑦) mod 𝑃) = (2 · 𝑦))
263244, 262eqtrd 2238 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((1 · (2 · 𝑦)) mod 𝑃) = (2 · 𝑦))
264 nnq 9756 . . . . . . . . . . . . . . . . . . 19 ((2 · 𝑥) ∈ ℕ → (2 · 𝑥) ∈ ℚ)
26547, 264syl 14 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℚ)
266 nnmulcl 9059 . . . . . . . . . . . . . . . . . . . . 21 ((2 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (2 · 𝑥) ∈ ℕ)
26722, 46, 266sylancr 414 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℕ)
268267nnnn0d 9350 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ∈ ℕ0)
269268nn0ge0d 9353 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → 0 ≤ (2 · 𝑥))
270 lemuldiv2 8957 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
271194, 206, 252, 254, 270syl112anc 1254 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) ≤ (𝑃 − 1) ↔ 𝑥 ≤ ((𝑃 − 1) / 2)))
272200, 271mpbird 167 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) ≤ (𝑃 − 1))
273 zltlem1 9432 . . . . . . . . . . . . . . . . . . . 20 (((2 · 𝑥) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((2 · 𝑥) < 𝑃 ↔ (2 · 𝑥) ≤ (𝑃 − 1)))
27488, 148, 273syl2anc 411 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) < 𝑃 ↔ (2 · 𝑥) ≤ (𝑃 − 1)))
275272, 274mpbird 167 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (2 · 𝑥) < 𝑃)
276 modqid 10496 . . . . . . . . . . . . . . . . . 18 ((((2 · 𝑥) ∈ ℚ ∧ 𝑃 ∈ ℚ) ∧ (0 ≤ (2 · 𝑥) ∧ (2 · 𝑥) < 𝑃)) → ((2 · 𝑥) mod 𝑃) = (2 · 𝑥))
277265, 110, 269, 275, 276syl22anc 1251 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑥) mod 𝑃) = (2 · 𝑥))
278263, 277eqeq12d 2220 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ (2 · 𝑦) = (2 · 𝑥)))
279278biimpd 144 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)))
280 oveq1 5953 . . . . . . . . . . . . . . . . . 18 ((-1↑(𝑅 + 𝑆)) = 1 → ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) = (1 · (2 · 𝑦)))
281280oveq1d 5961 . . . . . . . . . . . . . . . . 17 ((-1↑(𝑅 + 𝑆)) = 1 → (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((1 · (2 · 𝑦)) mod 𝑃))
282281eqeq1d 2214 . . . . . . . . . . . . . . . 16 ((-1↑(𝑅 + 𝑆)) = 1 → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ ((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃)))
283282imbi1d 231 . . . . . . . . . . . . . . 15 ((-1↑(𝑅 + 𝑆)) = 1 → (((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)) ↔ (((1 · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥))))
284279, 283syl5ibrcom 157 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) = 1 → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥))))
28591, 78nn0addcld 9354 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑅 + 𝑆) ∈ ℕ0)
286285nn0zd 9495 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑅 + 𝑆) ∈ ℤ)
287 m1expcl2 10708 . . . . . . . . . . . . . . 15 ((𝑅 + 𝑆) ∈ ℤ → (-1↑(𝑅 + 𝑆)) ∈ {-1, 1})
288 elpri 3656 . . . . . . . . . . . . . . 15 ((-1↑(𝑅 + 𝑆)) ∈ {-1, 1} → ((-1↑(𝑅 + 𝑆)) = -1 ∨ (-1↑(𝑅 + 𝑆)) = 1))
289286, 287, 2883syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) = -1 ∨ (-1↑(𝑅 + 𝑆)) = 1))
290242, 284, 289mpjaod 720 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) → (2 · 𝑦) = (2 · 𝑥)))
291 zexpcl 10701 . . . . . . . . . . . . . . . 16 ((-1 ∈ ℤ ∧ (𝑅 + 𝑆) ∈ ℕ0) → (-1↑(𝑅 + 𝑆)) ∈ ℤ)
29217, 285, 291sylancr 414 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (-1↑(𝑅 + 𝑆)) ∈ ℤ)
293292, 72zmulcld 9503 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) ∈ ℤ)
294 moddvds 12143 . . . . . . . . . . . . . 14 ((𝑃 ∈ ℕ ∧ ((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) ∈ ℤ ∧ (2 · 𝑥) ∈ ℤ) → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ 𝑃 ∥ (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥))))
29576, 293, 88, 294syl3anc 1250 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) mod 𝑃) = ((2 · 𝑥) mod 𝑃) ↔ 𝑃 ∥ (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥))))
296230, 229, 98, 99mulcanapd 8736 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((2 · 𝑦) = (2 · 𝑥) ↔ 𝑦 = 𝑥))
297290, 295, 2963imtr3d 202 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (((-1↑(𝑅 + 𝑆)) · (2 · 𝑦)) − (2 · 𝑥)) → 𝑦 = 𝑥))
298184, 297sylbid 150 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ ((-1↑𝑅) · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) → 𝑦 = 𝑥))
299152, 154, 2983syld 57 . . . . . . . . . 10 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (𝑄 · (((-1↑𝑆) · (2 · 𝑦)) − ((-1↑𝑅) · (2 · 𝑥)))) → 𝑦 = 𝑥))
300142, 299sylbird 170 . . . . . . . . 9 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (𝑃 ∥ (((-1↑𝑆) · (𝑄 · (2 · 𝑦))) − ((-1↑𝑅) · (𝑄 · (2 · 𝑥)))) → 𝑦 = 𝑥))
301127, 300sylbid 150 . . . . . . . 8 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · (𝑄 · (2 · 𝑦))) mod 𝑃) = (((-1↑𝑅) · (𝑄 · (2 · 𝑥))) mod 𝑃) → 𝑦 = 𝑥))
302123, 301sylbid 150 . . . . . . 7 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((((-1↑𝑆) · 𝑆) mod 𝑃) = (((-1↑𝑅) · 𝑅) mod 𝑃) → 𝑦 = 𝑥))
303101, 302sylbid 150 . . . . . 6 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → (((((-1↑𝑆) · 𝑆) mod 𝑃) / 2) = ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2) → 𝑦 = 𝑥))
30463, 303sylbid 150 . . . . 5 ((𝜑 ∧ (𝑦 ∈ (1...((𝑃 − 1) / 2)) ∧ 𝑥 ∈ (1...((𝑃 − 1) / 2)))) → ((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥))
305304ralrimivva 2588 . . . 4 (𝜑 → ∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑥 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥))
306 nfmpt1 4138 . . . . . . . . . 10 𝑥(𝑥 ∈ (1...((𝑃 − 1) / 2)) ↦ ((((-1↑𝑅) · 𝑅) mod 𝑃) / 2))
3075, 306nfcxfr 2345 . . . . . . . . 9 𝑥𝑀
308 nfcv 2348 . . . . . . . . 9 𝑥𝑦
309307, 308nffv 5588 . . . . . . . 8 𝑥(𝑀𝑦)
310 nfcv 2348 . . . . . . . . 9 𝑥𝑧
311307, 310nffv 5588 . . . . . . . 8 𝑥(𝑀𝑧)
312309, 311nfeq 2356 . . . . . . 7 𝑥(𝑀𝑦) = (𝑀𝑧)
313 nfv 1551 . . . . . . 7 𝑥 𝑦 = 𝑧
314312, 313nfim 1595 . . . . . 6 𝑥((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧)
315 nfv 1551 . . . . . 6 𝑧((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥)
316 fveq2 5578 . . . . . . . 8 (𝑧 = 𝑥 → (𝑀𝑧) = (𝑀𝑥))
317316eqeq2d 2217 . . . . . . 7 (𝑧 = 𝑥 → ((𝑀𝑦) = (𝑀𝑧) ↔ (𝑀𝑦) = (𝑀𝑥)))
318 equequ2 1736 . . . . . . 7 (𝑧 = 𝑥 → (𝑦 = 𝑧𝑦 = 𝑥))
319317, 318imbi12d 234 . . . . . 6 (𝑧 = 𝑥 → (((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧) ↔ ((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥)))
320314, 315, 319cbvralw 2732 . . . . 5 (∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧) ↔ ∀𝑥 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥))
321320ralbii 2512 . . . 4 (∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧) ↔ ∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑥 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑥) → 𝑦 = 𝑥))
322305, 321sylibr 134 . . 3 (𝜑 → ∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧))
323 dff13 5839 . . 3 (𝑀:(1...((𝑃 − 1) / 2))–1-1→(1...((𝑃 − 1) / 2)) ↔ (𝑀:(1...((𝑃 − 1) / 2))⟶(1...((𝑃 − 1) / 2)) ∧ ∀𝑦 ∈ (1...((𝑃 − 1) / 2))∀𝑧 ∈ (1...((𝑃 − 1) / 2))((𝑀𝑦) = (𝑀𝑧) → 𝑦 = 𝑧)))
3246, 322, 323sylanbrc 417 . 2 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1→(1...((𝑃 − 1) / 2)))
325 1zzd 9401 . . . . 5 (𝜑 → 1 ∈ ℤ)
3261, 196syl 14 . . . . . 6 (𝜑 → ((𝑃 − 1) / 2) ∈ ℕ)
327326nnzd 9496 . . . . 5 (𝜑 → ((𝑃 − 1) / 2) ∈ ℤ)
328325, 327fzfigd 10578 . . . 4 (𝜑 → (1...((𝑃 − 1) / 2)) ∈ Fin)
329 enrefg 6857 . . . 4 ((1...((𝑃 − 1) / 2)) ∈ Fin → (1...((𝑃 − 1) / 2)) ≈ (1...((𝑃 − 1) / 2)))
330328, 329syl 14 . . 3 (𝜑 → (1...((𝑃 − 1) / 2)) ≈ (1...((𝑃 − 1) / 2)))
331 f1finf1o 7051 . . 3 (((1...((𝑃 − 1) / 2)) ≈ (1...((𝑃 − 1) / 2)) ∧ (1...((𝑃 − 1) / 2)) ∈ Fin) → (𝑀:(1...((𝑃 − 1) / 2))–1-1→(1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))))
332330, 328, 331syl2anc 411 . 2 (𝜑 → (𝑀:(1...((𝑃 − 1) / 2))–1-1→(1...((𝑃 − 1) / 2)) ↔ 𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2))))
333324, 332mpbid 147 1 (𝜑𝑀:(1...((𝑃 − 1) / 2))–1-1-onto→(1...((𝑃 − 1) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2176  wne 2376  wral 2484  Vcvv 2772  cdif 3163  {csn 3633  {cpr 3634   class class class wbr 4045  cmpt 4106  wf 5268  1-1wf1 5269  1-1-ontowf1o 5271  cfv 5272  (class class class)co 5946  cen 6827  Fincfn 6829  cc 7925  cr 7926  0cc0 7927  1c1 7928   + caddc 7930   · cmul 7932   < clt 8109  cle 8110  cmin 8245  -cneg 8246   # cap 8656   / cdiv 8747  cn 9038  2c2 9089  0cn0 9297  cz 9374  cq 9742  ...cfz 10132   mod cmo 10469  cexp 10685  cdvds 12131   gcd cgcd 12307  cprime 12462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-mulrcl 8026  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-1rid 8034  ax-0id 8035  ax-rnegex 8036  ax-precex 8037  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-apti 8042  ax-pre-ltadd 8043  ax-pre-mulgt0 8044  ax-pre-mulext 8045  ax-arch 8046  ax-caucvg 8047
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-xor 1396  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-po 4344  df-iso 4345  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-1o 6504  df-2o 6505  df-er 6622  df-en 6830  df-fin 6832  df-sup 7088  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-reap 8650  df-ap 8657  df-div 8748  df-inn 9039  df-2 9097  df-3 9098  df-4 9099  df-n0 9298  df-z 9375  df-uz 9651  df-q 9743  df-rp 9778  df-fz 10133  df-fzo 10267  df-fl 10415  df-mod 10470  df-seqfrec 10595  df-exp 10686  df-cj 11186  df-re 11187  df-im 11188  df-rsqrt 11342  df-abs 11343  df-dvds 12132  df-gcd 12308  df-prm 12463
This theorem is referenced by:  lgseisenlem3  15582
  Copyright terms: Public domain W3C validator