| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjumkvlemres | GIF version | ||
| Description: Lemma for fodjumkv 7262. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| fodjumkv.o | ⊢ (𝜑 → 𝑀 ∈ Markov) |
| fodjumkv.fo | ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| fodjumkv.p | ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| Ref | Expression |
|---|---|
| fodjumkvlemres | ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjumkv.fo | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| 3 | fodjumkv.p | . . . . 5 ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 4 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) | |
| 5 | 2, 3, 4 | fodju0 7249 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
| 6 | 5 | ex 115 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
| 7 | 6 | necon3ad 2418 | . 2 ⊢ (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 8 | fveq1 5575 | . . . . . . 7 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
| 9 | 8 | eqeq1d 2214 | . . . . . 6 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
| 10 | 9 | ralbidv 2506 | . . . . 5 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 11 | 10 | notbid 669 | . . . 4 ⊢ (𝑓 = 𝑃 → (¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 12 | 8 | eqeq1d 2214 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
| 13 | 12 | rexbidv 2507 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
| 14 | 11, 13 | imbi12d 234 | . . 3 ⊢ (𝑓 = 𝑃 → ((¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅) ↔ (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅))) |
| 15 | fodjumkv.o | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Markov) | |
| 16 | ismkvmap 7256 | . . . . 5 ⊢ (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅))) | |
| 17 | 16 | ibi 176 | . . . 4 ⊢ (𝑀 ∈ Markov → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
| 18 | 15, 17 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
| 19 | 1, 3, 15 | fodjuf 7247 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑀)) |
| 20 | 14, 18, 19 | rspcdva 2882 | . 2 ⊢ (𝜑 → (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
| 21 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| 22 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) | |
| 23 | fveqeq2 5585 | . . . . . 6 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
| 24 | 23 | cbvrexv 2739 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
| 25 | 22, 24 | sylib 122 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
| 26 | 21, 3, 25 | fodjum 7248 | . . 3 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
| 27 | 26 | ex 115 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| 28 | 7, 20, 27 | 3syld 57 | 1 ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1515 ∈ wcel 2176 ≠ wne 2376 ∀wral 2484 ∃wrex 2485 ∅c0 3460 ifcif 3571 ↦ cmpt 4105 –onto→wfo 5269 ‘cfv 5271 (class class class)co 5944 1oc1o 6495 2oc2o 6496 ↑𝑚 cmap 6735 ⊔ cdju 7139 inlcinl 7147 Markovcmarkov 7253 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-1o 6502 df-2o 6503 df-map 6737 df-dju 7140 df-inl 7149 df-inr 7150 df-markov 7254 |
| This theorem is referenced by: fodjumkv 7262 |
| Copyright terms: Public domain | W3C validator |