Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fodjumkvlemres | GIF version |
Description: Lemma for fodjumkv 7124. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
Ref | Expression |
---|---|
fodjumkv.o | ⊢ (𝜑 → 𝑀 ∈ Markov) |
fodjumkv.fo | ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
fodjumkv.p | ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
Ref | Expression |
---|---|
fodjumkvlemres | ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fodjumkv.fo | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) | |
2 | 1 | adantr 274 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
3 | fodjumkv.p | . . . . 5 ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
4 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) | |
5 | 2, 3, 4 | fodju0 7111 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
6 | 5 | ex 114 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
7 | 6 | necon3ad 2378 | . 2 ⊢ (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
8 | fveq1 5485 | . . . . . . 7 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
9 | 8 | eqeq1d 2174 | . . . . . 6 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
10 | 9 | ralbidv 2466 | . . . . 5 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
11 | 10 | notbid 657 | . . . 4 ⊢ (𝑓 = 𝑃 → (¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
12 | 8 | eqeq1d 2174 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
13 | 12 | rexbidv 2467 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
14 | 11, 13 | imbi12d 233 | . . 3 ⊢ (𝑓 = 𝑃 → ((¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅) ↔ (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅))) |
15 | fodjumkv.o | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Markov) | |
16 | ismkvmap 7118 | . . . . 5 ⊢ (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅))) | |
17 | 16 | ibi 175 | . . . 4 ⊢ (𝑀 ∈ Markov → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
18 | 15, 17 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
19 | 1, 3, 15 | fodjuf 7109 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑀)) |
20 | 14, 18, 19 | rspcdva 2835 | . 2 ⊢ (𝜑 → (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
21 | 1 | adantr 274 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
22 | simpr 109 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) | |
23 | fveqeq2 5495 | . . . . . 6 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
24 | 23 | cbvrexv 2693 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
25 | 22, 24 | sylib 121 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
26 | 21, 3, 25 | fodjum 7110 | . . 3 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
27 | 26 | ex 114 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
28 | 7, 20, 27 | 3syld 57 | 1 ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
Colors of variables: wff set class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 103 = wceq 1343 ∃wex 1480 ∈ wcel 2136 ≠ wne 2336 ∀wral 2444 ∃wrex 2445 ∅c0 3409 ifcif 3520 ↦ cmpt 4043 –onto→wfo 5186 ‘cfv 5188 (class class class)co 5842 1oc1o 6377 2oc2o 6378 ↑𝑚 cmap 6614 ⊔ cdju 7002 inlcinl 7010 Markovcmarkov 7115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-1o 6384 df-2o 6385 df-map 6616 df-dju 7003 df-inl 7012 df-inr 7013 df-markov 7116 |
This theorem is referenced by: fodjumkv 7124 |
Copyright terms: Public domain | W3C validator |