ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkvlemres GIF version

Theorem fodjumkvlemres 7218
Description: Lemma for fodjumkv 7219. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o (𝜑𝑀 ∈ Markov)
fodjumkv.fo (𝜑𝐹:𝑀onto→(𝐴𝐵))
fodjumkv.p 𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
Assertion
Ref Expression
fodjumkvlemres (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑥,𝐴,𝑧   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝑃(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem fodjumkvlemres
Dummy variables 𝑣 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.fo . . . . . 6 (𝜑𝐹:𝑀onto→(𝐴𝐵))
21adantr 276 . . . . 5 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → 𝐹:𝑀onto→(𝐴𝐵))
3 fodjumkv.p . . . . 5 𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
4 simpr 110 . . . . 5 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → ∀𝑤𝑀 (𝑃𝑤) = 1o)
52, 3, 4fodju0 7206 . . . 4 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → 𝐴 = ∅)
65ex 115 . . 3 (𝜑 → (∀𝑤𝑀 (𝑃𝑤) = 1o𝐴 = ∅))
76necon3ad 2406 . 2 (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤𝑀 (𝑃𝑤) = 1o))
8 fveq1 5553 . . . . . . 7 (𝑓 = 𝑃 → (𝑓𝑤) = (𝑃𝑤))
98eqeq1d 2202 . . . . . 6 (𝑓 = 𝑃 → ((𝑓𝑤) = 1o ↔ (𝑃𝑤) = 1o))
109ralbidv 2494 . . . . 5 (𝑓 = 𝑃 → (∀𝑤𝑀 (𝑓𝑤) = 1o ↔ ∀𝑤𝑀 (𝑃𝑤) = 1o))
1110notbid 668 . . . 4 (𝑓 = 𝑃 → (¬ ∀𝑤𝑀 (𝑓𝑤) = 1o ↔ ¬ ∀𝑤𝑀 (𝑃𝑤) = 1o))
128eqeq1d 2202 . . . . 5 (𝑓 = 𝑃 → ((𝑓𝑤) = ∅ ↔ (𝑃𝑤) = ∅))
1312rexbidv 2495 . . . 4 (𝑓 = 𝑃 → (∃𝑤𝑀 (𝑓𝑤) = ∅ ↔ ∃𝑤𝑀 (𝑃𝑤) = ∅))
1411, 13imbi12d 234 . . 3 (𝑓 = 𝑃 → ((¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅) ↔ (¬ ∀𝑤𝑀 (𝑃𝑤) = 1o → ∃𝑤𝑀 (𝑃𝑤) = ∅)))
15 fodjumkv.o . . . 4 (𝜑𝑀 ∈ Markov)
16 ismkvmap 7213 . . . . 5 (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅)))
1716ibi 176 . . . 4 (𝑀 ∈ Markov → ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅))
1815, 17syl 14 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅))
191, 3, 15fodjuf 7204 . . 3 (𝜑𝑃 ∈ (2o𝑚 𝑀))
2014, 18, 19rspcdva 2869 . 2 (𝜑 → (¬ ∀𝑤𝑀 (𝑃𝑤) = 1o → ∃𝑤𝑀 (𝑃𝑤) = ∅))
211adantr 276 . . . 4 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → 𝐹:𝑀onto→(𝐴𝐵))
22 simpr 110 . . . . 5 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑤𝑀 (𝑃𝑤) = ∅)
23 fveqeq2 5563 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑣) = ∅))
2423cbvrexv 2727 . . . . 5 (∃𝑤𝑀 (𝑃𝑤) = ∅ ↔ ∃𝑣𝑀 (𝑃𝑣) = ∅)
2522, 24sylib 122 . . . 4 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑣𝑀 (𝑃𝑣) = ∅)
2621, 3, 25fodjum 7205 . . 3 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑥 𝑥𝐴)
2726ex 115 . 2 (𝜑 → (∃𝑤𝑀 (𝑃𝑤) = ∅ → ∃𝑥 𝑥𝐴))
287, 20, 273syld 57 1 (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wex 1503  wcel 2164  wne 2364  wral 2472  wrex 2473  c0 3446  ifcif 3557  cmpt 4090  ontowfo 5252  cfv 5254  (class class class)co 5918  1oc1o 6462  2oc2o 6463  𝑚 cmap 6702  cdju 7096  inlcinl 7104  Markovcmarkov 7210
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-1o 6469  df-2o 6470  df-map 6704  df-dju 7097  df-inl 7106  df-inr 7107  df-markov 7211
This theorem is referenced by:  fodjumkv  7219
  Copyright terms: Public domain W3C validator