ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkvlemres GIF version

Theorem fodjumkvlemres 7135
Description: Lemma for fodjumkv 7136. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o (𝜑𝑀 ∈ Markov)
fodjumkv.fo (𝜑𝐹:𝑀onto→(𝐴𝐵))
fodjumkv.p 𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
Assertion
Ref Expression
fodjumkvlemres (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑥,𝐴,𝑧   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝑃(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem fodjumkvlemres
Dummy variables 𝑣 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.fo . . . . . 6 (𝜑𝐹:𝑀onto→(𝐴𝐵))
21adantr 274 . . . . 5 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → 𝐹:𝑀onto→(𝐴𝐵))
3 fodjumkv.p . . . . 5 𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
4 simpr 109 . . . . 5 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → ∀𝑤𝑀 (𝑃𝑤) = 1o)
52, 3, 4fodju0 7123 . . . 4 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → 𝐴 = ∅)
65ex 114 . . 3 (𝜑 → (∀𝑤𝑀 (𝑃𝑤) = 1o𝐴 = ∅))
76necon3ad 2382 . 2 (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤𝑀 (𝑃𝑤) = 1o))
8 fveq1 5495 . . . . . . 7 (𝑓 = 𝑃 → (𝑓𝑤) = (𝑃𝑤))
98eqeq1d 2179 . . . . . 6 (𝑓 = 𝑃 → ((𝑓𝑤) = 1o ↔ (𝑃𝑤) = 1o))
109ralbidv 2470 . . . . 5 (𝑓 = 𝑃 → (∀𝑤𝑀 (𝑓𝑤) = 1o ↔ ∀𝑤𝑀 (𝑃𝑤) = 1o))
1110notbid 662 . . . 4 (𝑓 = 𝑃 → (¬ ∀𝑤𝑀 (𝑓𝑤) = 1o ↔ ¬ ∀𝑤𝑀 (𝑃𝑤) = 1o))
128eqeq1d 2179 . . . . 5 (𝑓 = 𝑃 → ((𝑓𝑤) = ∅ ↔ (𝑃𝑤) = ∅))
1312rexbidv 2471 . . . 4 (𝑓 = 𝑃 → (∃𝑤𝑀 (𝑓𝑤) = ∅ ↔ ∃𝑤𝑀 (𝑃𝑤) = ∅))
1411, 13imbi12d 233 . . 3 (𝑓 = 𝑃 → ((¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅) ↔ (¬ ∀𝑤𝑀 (𝑃𝑤) = 1o → ∃𝑤𝑀 (𝑃𝑤) = ∅)))
15 fodjumkv.o . . . 4 (𝜑𝑀 ∈ Markov)
16 ismkvmap 7130 . . . . 5 (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅)))
1716ibi 175 . . . 4 (𝑀 ∈ Markov → ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅))
1815, 17syl 14 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅))
191, 3, 15fodjuf 7121 . . 3 (𝜑𝑃 ∈ (2o𝑚 𝑀))
2014, 18, 19rspcdva 2839 . 2 (𝜑 → (¬ ∀𝑤𝑀 (𝑃𝑤) = 1o → ∃𝑤𝑀 (𝑃𝑤) = ∅))
211adantr 274 . . . 4 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → 𝐹:𝑀onto→(𝐴𝐵))
22 simpr 109 . . . . 5 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑤𝑀 (𝑃𝑤) = ∅)
23 fveqeq2 5505 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑣) = ∅))
2423cbvrexv 2697 . . . . 5 (∃𝑤𝑀 (𝑃𝑤) = ∅ ↔ ∃𝑣𝑀 (𝑃𝑣) = ∅)
2522, 24sylib 121 . . . 4 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑣𝑀 (𝑃𝑣) = ∅)
2621, 3, 25fodjum 7122 . . 3 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑥 𝑥𝐴)
2726ex 114 . 2 (𝜑 → (∃𝑤𝑀 (𝑃𝑤) = ∅ → ∃𝑥 𝑥𝐴))
287, 20, 273syld 57 1 (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1348  wex 1485  wcel 2141  wne 2340  wral 2448  wrex 2449  c0 3414  ifcif 3526  cmpt 4050  ontowfo 5196  cfv 5198  (class class class)co 5853  1oc1o 6388  2oc2o 6389  𝑚 cmap 6626  cdju 7014  inlcinl 7022  Markovcmarkov 7127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-1o 6395  df-2o 6396  df-map 6628  df-dju 7015  df-inl 7024  df-inr 7025  df-markov 7128
This theorem is referenced by:  fodjumkv  7136
  Copyright terms: Public domain W3C validator