Step | Hyp | Ref
| Expression |
1 | | fodjumkv.fo |
. . . . . 6
β’ (π β πΉ:πβontoβ(π΄ β π΅)) |
2 | 1 | adantr 276 |
. . . . 5
β’ ((π β§ βπ€ β π (πβπ€) = 1o) β πΉ:πβontoβ(π΄ β π΅)) |
3 | | fodjumkv.p |
. . . . 5
β’ π = (π¦ β π β¦ if(βπ§ β π΄ (πΉβπ¦) = (inlβπ§), β
, 1o)) |
4 | | simpr 110 |
. . . . 5
β’ ((π β§ βπ€ β π (πβπ€) = 1o) β βπ€ β π (πβπ€) = 1o) |
5 | 2, 3, 4 | fodju0 7147 |
. . . 4
β’ ((π β§ βπ€ β π (πβπ€) = 1o) β π΄ = β
) |
6 | 5 | ex 115 |
. . 3
β’ (π β (βπ€ β π (πβπ€) = 1o β π΄ = β
)) |
7 | 6 | necon3ad 2389 |
. 2
β’ (π β (π΄ β β
β Β¬ βπ€ β π (πβπ€) = 1o)) |
8 | | fveq1 5516 |
. . . . . . 7
β’ (π = π β (πβπ€) = (πβπ€)) |
9 | 8 | eqeq1d 2186 |
. . . . . 6
β’ (π = π β ((πβπ€) = 1o β (πβπ€) = 1o)) |
10 | 9 | ralbidv 2477 |
. . . . 5
β’ (π = π β (βπ€ β π (πβπ€) = 1o β βπ€ β π (πβπ€) = 1o)) |
11 | 10 | notbid 667 |
. . . 4
β’ (π = π β (Β¬ βπ€ β π (πβπ€) = 1o β Β¬ βπ€ β π (πβπ€) = 1o)) |
12 | 8 | eqeq1d 2186 |
. . . . 5
β’ (π = π β ((πβπ€) = β
β (πβπ€) = β
)) |
13 | 12 | rexbidv 2478 |
. . . 4
β’ (π = π β (βπ€ β π (πβπ€) = β
β βπ€ β π (πβπ€) = β
)) |
14 | 11, 13 | imbi12d 234 |
. . 3
β’ (π = π β ((Β¬ βπ€ β π (πβπ€) = 1o β βπ€ β π (πβπ€) = β
) β (Β¬ βπ€ β π (πβπ€) = 1o β βπ€ β π (πβπ€) = β
))) |
15 | | fodjumkv.o |
. . . 4
β’ (π β π β Markov) |
16 | | ismkvmap 7154 |
. . . . 5
β’ (π β Markov β (π β Markov β
βπ β
(2o βπ π)(Β¬ βπ€ β π (πβπ€) = 1o β βπ€ β π (πβπ€) = β
))) |
17 | 16 | ibi 176 |
. . . 4
β’ (π β Markov β
βπ β
(2o βπ π)(Β¬ βπ€ β π (πβπ€) = 1o β βπ€ β π (πβπ€) = β
)) |
18 | 15, 17 | syl 14 |
. . 3
β’ (π β βπ β (2o
βπ π)(Β¬ βπ€ β π (πβπ€) = 1o β βπ€ β π (πβπ€) = β
)) |
19 | 1, 3, 15 | fodjuf 7145 |
. . 3
β’ (π β π β (2o
βπ π)) |
20 | 14, 18, 19 | rspcdva 2848 |
. 2
β’ (π β (Β¬ βπ€ β π (πβπ€) = 1o β βπ€ β π (πβπ€) = β
)) |
21 | 1 | adantr 276 |
. . . 4
β’ ((π β§ βπ€ β π (πβπ€) = β
) β πΉ:πβontoβ(π΄ β π΅)) |
22 | | simpr 110 |
. . . . 5
β’ ((π β§ βπ€ β π (πβπ€) = β
) β βπ€ β π (πβπ€) = β
) |
23 | | fveqeq2 5526 |
. . . . . 6
β’ (π€ = π£ β ((πβπ€) = β
β (πβπ£) = β
)) |
24 | 23 | cbvrexv 2706 |
. . . . 5
β’
(βπ€ β
π (πβπ€) = β
β βπ£ β π (πβπ£) = β
) |
25 | 22, 24 | sylib 122 |
. . . 4
β’ ((π β§ βπ€ β π (πβπ€) = β
) β βπ£ β π (πβπ£) = β
) |
26 | 21, 3, 25 | fodjum 7146 |
. . 3
β’ ((π β§ βπ€ β π (πβπ€) = β
) β βπ₯ π₯ β π΄) |
27 | 26 | ex 115 |
. 2
β’ (π β (βπ€ β π (πβπ€) = β
β βπ₯ π₯ β π΄)) |
28 | 7, 20, 27 | 3syld 57 |
1
β’ (π β (π΄ β β
β βπ₯ π₯ β π΄)) |