| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjumkvlemres | GIF version | ||
| Description: Lemma for fodjumkv 7226. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| fodjumkv.o | ⊢ (𝜑 → 𝑀 ∈ Markov) |
| fodjumkv.fo | ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| fodjumkv.p | ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| Ref | Expression |
|---|---|
| fodjumkvlemres | ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjumkv.fo | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| 3 | fodjumkv.p | . . . . 5 ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 4 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) | |
| 5 | 2, 3, 4 | fodju0 7213 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
| 6 | 5 | ex 115 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
| 7 | 6 | necon3ad 2409 | . 2 ⊢ (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 8 | fveq1 5557 | . . . . . . 7 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
| 9 | 8 | eqeq1d 2205 | . . . . . 6 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
| 10 | 9 | ralbidv 2497 | . . . . 5 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 11 | 10 | notbid 668 | . . . 4 ⊢ (𝑓 = 𝑃 → (¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 12 | 8 | eqeq1d 2205 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
| 13 | 12 | rexbidv 2498 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
| 14 | 11, 13 | imbi12d 234 | . . 3 ⊢ (𝑓 = 𝑃 → ((¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅) ↔ (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅))) |
| 15 | fodjumkv.o | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Markov) | |
| 16 | ismkvmap 7220 | . . . . 5 ⊢ (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅))) | |
| 17 | 16 | ibi 176 | . . . 4 ⊢ (𝑀 ∈ Markov → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
| 18 | 15, 17 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
| 19 | 1, 3, 15 | fodjuf 7211 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑀)) |
| 20 | 14, 18, 19 | rspcdva 2873 | . 2 ⊢ (𝜑 → (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
| 21 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| 22 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) | |
| 23 | fveqeq2 5567 | . . . . . 6 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
| 24 | 23 | cbvrexv 2730 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
| 25 | 22, 24 | sylib 122 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
| 26 | 21, 3, 25 | fodjum 7212 | . . 3 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
| 27 | 26 | ex 115 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| 28 | 7, 20, 27 | 3syld 57 | 1 ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 ∃wrex 2476 ∅c0 3450 ifcif 3561 ↦ cmpt 4094 –onto→wfo 5256 ‘cfv 5258 (class class class)co 5922 1oc1o 6467 2oc2o 6468 ↑𝑚 cmap 6707 ⊔ cdju 7103 inlcinl 7111 Markovcmarkov 7217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-if 3562 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-1o 6474 df-2o 6475 df-map 6709 df-dju 7104 df-inl 7113 df-inr 7114 df-markov 7218 |
| This theorem is referenced by: fodjumkv 7226 |
| Copyright terms: Public domain | W3C validator |