| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjumkvlemres | GIF version | ||
| Description: Lemma for fodjumkv 7327. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| fodjumkv.o | ⊢ (𝜑 → 𝑀 ∈ Markov) |
| fodjumkv.fo | ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| fodjumkv.p | ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| Ref | Expression |
|---|---|
| fodjumkvlemres | ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjumkv.fo | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| 3 | fodjumkv.p | . . . . 5 ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 4 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) | |
| 5 | 2, 3, 4 | fodju0 7314 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
| 6 | 5 | ex 115 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
| 7 | 6 | necon3ad 2442 | . 2 ⊢ (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 8 | fveq1 5626 | . . . . . . 7 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
| 9 | 8 | eqeq1d 2238 | . . . . . 6 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
| 10 | 9 | ralbidv 2530 | . . . . 5 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 11 | 10 | notbid 671 | . . . 4 ⊢ (𝑓 = 𝑃 → (¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 12 | 8 | eqeq1d 2238 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
| 13 | 12 | rexbidv 2531 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
| 14 | 11, 13 | imbi12d 234 | . . 3 ⊢ (𝑓 = 𝑃 → ((¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅) ↔ (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅))) |
| 15 | fodjumkv.o | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Markov) | |
| 16 | ismkvmap 7321 | . . . . 5 ⊢ (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅))) | |
| 17 | 16 | ibi 176 | . . . 4 ⊢ (𝑀 ∈ Markov → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
| 18 | 15, 17 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
| 19 | 1, 3, 15 | fodjuf 7312 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑀)) |
| 20 | 14, 18, 19 | rspcdva 2912 | . 2 ⊢ (𝜑 → (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
| 21 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| 22 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) | |
| 23 | fveqeq2 5636 | . . . . . 6 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
| 24 | 23 | cbvrexv 2766 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
| 25 | 22, 24 | sylib 122 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
| 26 | 21, 3, 25 | fodjum 7313 | . . 3 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
| 27 | 26 | ex 115 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| 28 | 7, 20, 27 | 3syld 57 | 1 ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1395 ∃wex 1538 ∈ wcel 2200 ≠ wne 2400 ∀wral 2508 ∃wrex 2509 ∅c0 3491 ifcif 3602 ↦ cmpt 4145 –onto→wfo 5316 ‘cfv 5318 (class class class)co 6001 1oc1o 6555 2oc2o 6556 ↑𝑚 cmap 6795 ⊔ cdju 7204 inlcinl 7212 Markovcmarkov 7318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-1o 6562 df-2o 6563 df-map 6797 df-dju 7205 df-inl 7214 df-inr 7215 df-markov 7319 |
| This theorem is referenced by: fodjumkv 7327 |
| Copyright terms: Public domain | W3C validator |