| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fodjumkvlemres | GIF version | ||
| Description: Lemma for fodjumkv 7288. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.) |
| Ref | Expression |
|---|---|
| fodjumkv.o | ⊢ (𝜑 → 𝑀 ∈ Markov) |
| fodjumkv.fo | ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| fodjumkv.p | ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) |
| Ref | Expression |
|---|---|
| fodjumkvlemres | ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fodjumkv.fo | . . . . . 6 ⊢ (𝜑 → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) | |
| 2 | 1 | adantr 276 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| 3 | fodjumkv.p | . . . . 5 ⊢ 𝑃 = (𝑦 ∈ 𝑀 ↦ if(∃𝑧 ∈ 𝐴 (𝐹‘𝑦) = (inl‘𝑧), ∅, 1o)) | |
| 4 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) | |
| 5 | 2, 3, 4 | fodju0 7275 | . . . 4 ⊢ ((𝜑 ∧ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o) → 𝐴 = ∅) |
| 6 | 5 | ex 115 | . . 3 ⊢ (𝜑 → (∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → 𝐴 = ∅)) |
| 7 | 6 | necon3ad 2420 | . 2 ⊢ (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 8 | fveq1 5598 | . . . . . . 7 ⊢ (𝑓 = 𝑃 → (𝑓‘𝑤) = (𝑃‘𝑤)) | |
| 9 | 8 | eqeq1d 2216 | . . . . . 6 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = 1o ↔ (𝑃‘𝑤) = 1o)) |
| 10 | 9 | ralbidv 2508 | . . . . 5 ⊢ (𝑓 = 𝑃 → (∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 11 | 10 | notbid 669 | . . . 4 ⊢ (𝑓 = 𝑃 → (¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o ↔ ¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o)) |
| 12 | 8 | eqeq1d 2216 | . . . . 5 ⊢ (𝑓 = 𝑃 → ((𝑓‘𝑤) = ∅ ↔ (𝑃‘𝑤) = ∅)) |
| 13 | 12 | rexbidv 2509 | . . . 4 ⊢ (𝑓 = 𝑃 → (∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅ ↔ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
| 14 | 11, 13 | imbi12d 234 | . . 3 ⊢ (𝑓 = 𝑃 → ((¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅) ↔ (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅))) |
| 15 | fodjumkv.o | . . . 4 ⊢ (𝜑 → 𝑀 ∈ Markov) | |
| 16 | ismkvmap 7282 | . . . . 5 ⊢ (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅))) | |
| 17 | 16 | ibi 176 | . . . 4 ⊢ (𝑀 ∈ Markov → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
| 18 | 15, 17 | syl 14 | . . 3 ⊢ (𝜑 → ∀𝑓 ∈ (2o ↑𝑚 𝑀)(¬ ∀𝑤 ∈ 𝑀 (𝑓‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑓‘𝑤) = ∅)) |
| 19 | 1, 3, 15 | fodjuf 7273 | . . 3 ⊢ (𝜑 → 𝑃 ∈ (2o ↑𝑚 𝑀)) |
| 20 | 14, 18, 19 | rspcdva 2889 | . 2 ⊢ (𝜑 → (¬ ∀𝑤 ∈ 𝑀 (𝑃‘𝑤) = 1o → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅)) |
| 21 | 1 | adantr 276 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → 𝐹:𝑀–onto→(𝐴 ⊔ 𝐵)) |
| 22 | simpr 110 | . . . . 5 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) | |
| 23 | fveqeq2 5608 | . . . . . 6 ⊢ (𝑤 = 𝑣 → ((𝑃‘𝑤) = ∅ ↔ (𝑃‘𝑣) = ∅)) | |
| 24 | 23 | cbvrexv 2743 | . . . . 5 ⊢ (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ ↔ ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
| 25 | 22, 24 | sylib 122 | . . . 4 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑣 ∈ 𝑀 (𝑃‘𝑣) = ∅) |
| 26 | 21, 3, 25 | fodjum 7274 | . . 3 ⊢ ((𝜑 ∧ ∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅) → ∃𝑥 𝑥 ∈ 𝐴) |
| 27 | 26 | ex 115 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑀 (𝑃‘𝑤) = ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| 28 | 7, 20, 27 | 3syld 57 | 1 ⊢ (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥 ∈ 𝐴)) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 104 = wceq 1373 ∃wex 1516 ∈ wcel 2178 ≠ wne 2378 ∀wral 2486 ∃wrex 2487 ∅c0 3468 ifcif 3579 ↦ cmpt 4121 –onto→wfo 5288 ‘cfv 5290 (class class class)co 5967 1oc1o 6518 2oc2o 6519 ↑𝑚 cmap 6758 ⊔ cdju 7165 inlcinl 7173 Markovcmarkov 7279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-1o 6525 df-2o 6526 df-map 6760 df-dju 7166 df-inl 7175 df-inr 7176 df-markov 7280 |
| This theorem is referenced by: fodjumkv 7288 |
| Copyright terms: Public domain | W3C validator |