ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fodjumkvlemres GIF version

Theorem fodjumkvlemres 7225
Description: Lemma for fodjumkv 7226. The final result with 𝑃 expressed as a local definition. (Contributed by Jim Kingdon, 25-Mar-2023.)
Hypotheses
Ref Expression
fodjumkv.o (𝜑𝑀 ∈ Markov)
fodjumkv.fo (𝜑𝐹:𝑀onto→(𝐴𝐵))
fodjumkv.p 𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
Assertion
Ref Expression
fodjumkvlemres (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Distinct variable groups:   𝜑,𝑦,𝑧   𝑦,𝑀,𝑧   𝑧,𝐴   𝑧,𝐵   𝑧,𝐹   𝑥,𝐴,𝑧   𝑦,𝐴   𝑦,𝐹   𝑦,𝑃,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥,𝑦)   𝑃(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem fodjumkvlemres
Dummy variables 𝑣 𝑓 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fodjumkv.fo . . . . . 6 (𝜑𝐹:𝑀onto→(𝐴𝐵))
21adantr 276 . . . . 5 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → 𝐹:𝑀onto→(𝐴𝐵))
3 fodjumkv.p . . . . 5 𝑃 = (𝑦𝑀 ↦ if(∃𝑧𝐴 (𝐹𝑦) = (inl‘𝑧), ∅, 1o))
4 simpr 110 . . . . 5 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → ∀𝑤𝑀 (𝑃𝑤) = 1o)
52, 3, 4fodju0 7213 . . . 4 ((𝜑 ∧ ∀𝑤𝑀 (𝑃𝑤) = 1o) → 𝐴 = ∅)
65ex 115 . . 3 (𝜑 → (∀𝑤𝑀 (𝑃𝑤) = 1o𝐴 = ∅))
76necon3ad 2409 . 2 (𝜑 → (𝐴 ≠ ∅ → ¬ ∀𝑤𝑀 (𝑃𝑤) = 1o))
8 fveq1 5557 . . . . . . 7 (𝑓 = 𝑃 → (𝑓𝑤) = (𝑃𝑤))
98eqeq1d 2205 . . . . . 6 (𝑓 = 𝑃 → ((𝑓𝑤) = 1o ↔ (𝑃𝑤) = 1o))
109ralbidv 2497 . . . . 5 (𝑓 = 𝑃 → (∀𝑤𝑀 (𝑓𝑤) = 1o ↔ ∀𝑤𝑀 (𝑃𝑤) = 1o))
1110notbid 668 . . . 4 (𝑓 = 𝑃 → (¬ ∀𝑤𝑀 (𝑓𝑤) = 1o ↔ ¬ ∀𝑤𝑀 (𝑃𝑤) = 1o))
128eqeq1d 2205 . . . . 5 (𝑓 = 𝑃 → ((𝑓𝑤) = ∅ ↔ (𝑃𝑤) = ∅))
1312rexbidv 2498 . . . 4 (𝑓 = 𝑃 → (∃𝑤𝑀 (𝑓𝑤) = ∅ ↔ ∃𝑤𝑀 (𝑃𝑤) = ∅))
1411, 13imbi12d 234 . . 3 (𝑓 = 𝑃 → ((¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅) ↔ (¬ ∀𝑤𝑀 (𝑃𝑤) = 1o → ∃𝑤𝑀 (𝑃𝑤) = ∅)))
15 fodjumkv.o . . . 4 (𝜑𝑀 ∈ Markov)
16 ismkvmap 7220 . . . . 5 (𝑀 ∈ Markov → (𝑀 ∈ Markov ↔ ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅)))
1716ibi 176 . . . 4 (𝑀 ∈ Markov → ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅))
1815, 17syl 14 . . 3 (𝜑 → ∀𝑓 ∈ (2o𝑚 𝑀)(¬ ∀𝑤𝑀 (𝑓𝑤) = 1o → ∃𝑤𝑀 (𝑓𝑤) = ∅))
191, 3, 15fodjuf 7211 . . 3 (𝜑𝑃 ∈ (2o𝑚 𝑀))
2014, 18, 19rspcdva 2873 . 2 (𝜑 → (¬ ∀𝑤𝑀 (𝑃𝑤) = 1o → ∃𝑤𝑀 (𝑃𝑤) = ∅))
211adantr 276 . . . 4 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → 𝐹:𝑀onto→(𝐴𝐵))
22 simpr 110 . . . . 5 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑤𝑀 (𝑃𝑤) = ∅)
23 fveqeq2 5567 . . . . . 6 (𝑤 = 𝑣 → ((𝑃𝑤) = ∅ ↔ (𝑃𝑣) = ∅))
2423cbvrexv 2730 . . . . 5 (∃𝑤𝑀 (𝑃𝑤) = ∅ ↔ ∃𝑣𝑀 (𝑃𝑣) = ∅)
2522, 24sylib 122 . . . 4 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑣𝑀 (𝑃𝑣) = ∅)
2621, 3, 25fodjum 7212 . . 3 ((𝜑 ∧ ∃𝑤𝑀 (𝑃𝑤) = ∅) → ∃𝑥 𝑥𝐴)
2726ex 115 . 2 (𝜑 → (∃𝑤𝑀 (𝑃𝑤) = ∅ → ∃𝑥 𝑥𝐴))
287, 20, 273syld 57 1 (𝜑 → (𝐴 ≠ ∅ → ∃𝑥 𝑥𝐴))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104   = wceq 1364  wex 1506  wcel 2167  wne 2367  wral 2475  wrex 2476  c0 3450  ifcif 3561  cmpt 4094  ontowfo 5256  cfv 5258  (class class class)co 5922  1oc1o 6467  2oc2o 6468  𝑚 cmap 6707  cdju 7103  inlcinl 7111  Markovcmarkov 7217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-1o 6474  df-2o 6475  df-map 6709  df-dju 7104  df-inl 7113  df-inr 7114  df-markov 7218
This theorem is referenced by:  fodjumkv  7226
  Copyright terms: Public domain W3C validator