ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpexp GIF version

Theorem rpexp 12346
Description: If two numbers 𝐴 and 𝐵 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
rpexp ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))

Proof of Theorem rpexp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0exp 10683 . . . . . 6 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
21oveq1d 5940 . . . . 5 (𝑁 ∈ ℕ → ((0↑𝑁) gcd 0) = (0 gcd 0))
32eqeq1d 2205 . . . 4 (𝑁 ∈ ℕ → (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) = 1))
4 oveq1 5932 . . . . . . 7 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
5 oveq12 5934 . . . . . . 7 (((𝐴𝑁) = (0↑𝑁) ∧ 𝐵 = 0) → ((𝐴𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0))
64, 5sylan 283 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0))
76eqeq1d 2205 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ ((0↑𝑁) gcd 0) = 1))
8 oveq12 5934 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
98eqeq1d 2205 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 ↔ (0 gcd 0) = 1))
107, 9bibi12d 235 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) = 1)))
113, 10syl5ibrcom 157 . . 3 (𝑁 ∈ ℕ → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
12113ad2ant3 1022 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
13 exprmfct 12331 . . . . . . 7 (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵))
14 simpl1 1002 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ)
15 simpl3 1004 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ)
1615nnnn0d 9319 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ0)
17 zexpcl 10663 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
1814, 16, 17syl2anc 411 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝑁) ∈ ℤ)
1918adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
20 simpl2 1003 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ)
2120adantr 276 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
22 gcddvds 12155 . . . . . . . . . . . . . . 15 (((𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵))
2319, 21, 22syl2anc 411 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵))
2423simpld 112 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁))
25 prmz 12304 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2625adantl 277 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
27 simpr 110 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2814zcnd 9466 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℂ)
29 expeq0 10679 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
3028, 15, 29syl2anc 411 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
3130anbi1d 465 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) = 0 ∧ 𝐵 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3227, 31mtbird 674 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ ((𝐴𝑁) = 0 ∧ 𝐵 = 0))
33 gcdn0cl 12154 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ ((𝐴𝑁) = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ)
3418, 20, 32, 33syl21anc 1248 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ)
3534nnzd 9464 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
3635adantr 276 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
37 dvdstr 12010 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ ((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
3826, 36, 19, 37syl3anc 1249 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
3924, 38mpan2d 428 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝 ∥ (𝐴𝑁)))
40 simpr 110 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
41 simpll1 1038 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
4215adantr 276 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
43 prmdvdsexp 12341 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (𝐴𝑁) ↔ 𝑝𝐴))
4440, 41, 42, 43syl3anc 1249 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴𝑁) ↔ 𝑝𝐴))
4539, 44sylibd 149 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝𝐴))
4623simprd 114 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∥ 𝐵)
47 dvdstr 12010 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ ((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
4826, 36, 21, 47syl3anc 1249 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
4946, 48mpan2d 428 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝𝐵))
5045, 49jcad 307 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝑝𝐴𝑝𝐵)))
51 dvdsgcd 12204 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
5226, 41, 21, 51syl3anc 1249 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
53 nprmdvds1 12333 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
54 breq2 4038 . . . . . . . . . . . . . 14 ((𝐴 gcd 𝐵) = 1 → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1))
5554notbid 668 . . . . . . . . . . . . 13 ((𝐴 gcd 𝐵) = 1 → (¬ 𝑝 ∥ (𝐴 gcd 𝐵) ↔ ¬ 𝑝 ∥ 1))
5653, 55syl5ibrcom 157 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → ((𝐴 gcd 𝐵) = 1 → ¬ 𝑝 ∥ (𝐴 gcd 𝐵)))
5756necon2ad 2424 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
5857adantl 277 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
5950, 52, 583syld 57 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
6059rexlimdva 2614 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
61 gcdn0cl 12154 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
62613adantl3 1157 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
63 eluz2b3 9695 . . . . . . . . . 10 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1))
6463baib 920 . . . . . . . . 9 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ≠ 1))
6562, 64syl 14 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ≠ 1))
6660, 65sylibrd 169 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
6713, 66syl5 32 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) → (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
68 exprmfct 12331 . . . . . . 7 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵))
69 gcddvds 12155 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
7041, 21, 69syl2anc 411 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
7170simpld 112 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐴)
72 iddvdsexp 11997 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∥ (𝐴𝑁))
7341, 42, 72syl2anc 411 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝐴𝑁))
7462nnzd 9464 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℤ)
7574adantr 276 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∈ ℤ)
76 dvdstr 12010 . . . . . . . . . . . . . 14 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (((𝐴 gcd 𝐵) ∥ 𝐴𝐴 ∥ (𝐴𝑁)) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁)))
7775, 41, 19, 76syl3anc 1249 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴 gcd 𝐵) ∥ 𝐴𝐴 ∥ (𝐴𝑁)) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁)))
7871, 73, 77mp2and 433 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁))
79 dvdstr 12010 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
8026, 75, 19, 79syl3anc 1249 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
8178, 80mpan2d 428 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝 ∥ (𝐴𝑁)))
8270simprd 114 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐵)
83 dvdstr 12010 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
8426, 75, 21, 83syl3anc 1249 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
8582, 84mpan2d 428 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝𝐵))
8681, 85jcad 307 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵)))
87 dvdsgcd 12204 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵) → 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
8826, 19, 21, 87syl3anc 1249 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵) → 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
89 breq2 4038 . . . . . . . . . . . . . 14 (((𝐴𝑁) gcd 𝐵) = 1 → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ↔ 𝑝 ∥ 1))
9089notbid 668 . . . . . . . . . . . . 13 (((𝐴𝑁) gcd 𝐵) = 1 → (¬ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ↔ ¬ 𝑝 ∥ 1))
9153, 90syl5ibrcom 157 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (((𝐴𝑁) gcd 𝐵) = 1 → ¬ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
9291necon2ad 2424 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9392adantl 277 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9486, 88, 933syld 57 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9594rexlimdva 2614 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
96 eluz2b3 9695 . . . . . . . . . 10 (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ (((𝐴𝑁) gcd 𝐵) ∈ ℕ ∧ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9796baib 920 . . . . . . . . 9 (((𝐴𝑁) gcd 𝐵) ∈ ℕ → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9834, 97syl 14 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9995, 98sylibrd 169 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2)))
10068, 99syl5 32 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) → ((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2)))
10167, 100impbid 129 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
102101, 98, 653bitr3d 218 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1))
103 simp1 999 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ)
104 simp3 1001 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
105104nnnn0d 9319 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
106103, 105, 17syl2anc 411 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℤ)
107 simp2 1000 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ)
108106, 107gcdcld 12160 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ0)
109108nn0zd 9463 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
110 1zzd 9370 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℤ)
111 zdceq 9418 . . . . . . 7 ((((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → DECID ((𝐴𝑁) gcd 𝐵) = 1)
112109, 110, 111syl2anc 411 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → DECID ((𝐴𝑁) gcd 𝐵) = 1)
113103, 107gcdcld 12160 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ0)
114113nn0zd 9463 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
115 zdceq 9418 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 gcd 𝐵) = 1)
116114, 110, 115syl2anc 411 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → DECID (𝐴 gcd 𝐵) = 1)
117 nebidc 2447 . . . . . 6 (DECID ((𝐴𝑁) gcd 𝐵) = 1 → (DECID (𝐴 gcd 𝐵) = 1 → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1))))
118112, 116, 117sylc 62 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1)))
119118adantr 276 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1)))
120102, 119mpbird 167 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
121120ex 115 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ (𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
122 gcdmndc 12147 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID (𝐴 = 0 ∧ 𝐵 = 0))
123 exmiddc 837 . . . 4 (DECID (𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
124122, 123syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
1251243adant3 1019 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
12612, 121, 125mpjaod 719 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  w3a 980   = wceq 1364  wcel 2167  wne 2367  wrex 2476   class class class wbr 4034  cfv 5259  (class class class)co 5925  cc 7894  0cc0 7896  1c1 7897  cn 9007  2c2 9058  0cn0 9266  cz 9343  cuz 9618  cexp 10647  cdvds 11969   gcd cgcd 12145  cprime 12300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-sup 7059  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-q 9711  df-rp 9746  df-fz 10101  df-fzo 10235  df-fl 10377  df-mod 10432  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-dvds 11970  df-gcd 12146  df-prm 12301
This theorem is referenced by:  rpexp1i  12347  phiprmpw  12415  pockthlem  12550  logbgcd1irr  15287  logbgcd1irraplemexp  15288
  Copyright terms: Public domain W3C validator