ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpexp GIF version

Theorem rpexp 11727
Description: If two numbers 𝐴 and 𝐵 are relatively prime, then they are still relatively prime if raised to a power. (Contributed by Mario Carneiro, 24-Feb-2014.)
Assertion
Ref Expression
rpexp ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))

Proof of Theorem rpexp
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 0exp 10268 . . . . . 6 (𝑁 ∈ ℕ → (0↑𝑁) = 0)
21oveq1d 5755 . . . . 5 (𝑁 ∈ ℕ → ((0↑𝑁) gcd 0) = (0 gcd 0))
32eqeq1d 2124 . . . 4 (𝑁 ∈ ℕ → (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) = 1))
4 oveq1 5747 . . . . . . 7 (𝐴 = 0 → (𝐴𝑁) = (0↑𝑁))
5 oveq12 5749 . . . . . . 7 (((𝐴𝑁) = (0↑𝑁) ∧ 𝐵 = 0) → ((𝐴𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0))
64, 5sylan 279 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0))
76eqeq1d 2124 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ ((0↑𝑁) gcd 0) = 1))
8 oveq12 5749 . . . . . 6 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0))
98eqeq1d 2124 . . . . 5 ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 ↔ (0 gcd 0) = 1))
107, 9bibi12d 234 . . . 4 ((𝐴 = 0 ∧ 𝐵 = 0) → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) = 1)))
113, 10syl5ibrcom 156 . . 3 (𝑁 ∈ ℕ → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
12113ad2ant3 987 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
13 exprmfct 11714 . . . . . . 7 (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵))
14 simpl1 967 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ)
15 simpl3 969 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ)
1615nnnn0d 8981 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ0)
17 zexpcl 10248 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0) → (𝐴𝑁) ∈ ℤ)
1814, 16, 17syl2anc 406 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴𝑁) ∈ ℤ)
1918adantr 272 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴𝑁) ∈ ℤ)
20 simpl2 968 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ)
2120adantr 272 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ)
22 gcddvds 11548 . . . . . . . . . . . . . . 15 (((𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵))
2319, 21, 22syl2anc 406 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵))
2423simpld 111 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁))
25 prmz 11688 . . . . . . . . . . . . . . 15 (𝑝 ∈ ℙ → 𝑝 ∈ ℤ)
2625adantl 273 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ)
27 simpr 109 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0))
2814zcnd 9125 . . . . . . . . . . . . . . . . . . . 20 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℂ)
29 expeq0 10264 . . . . . . . . . . . . . . . . . . . 20 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
3028, 15, 29syl2anc 406 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) = 0 ↔ 𝐴 = 0))
3130anbi1d 458 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) = 0 ∧ 𝐵 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
3227, 31mtbird 645 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ¬ ((𝐴𝑁) = 0 ∧ 𝐵 = 0))
33 gcdn0cl 11547 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ ((𝐴𝑁) = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ)
3418, 20, 32, 33syl21anc 1198 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ)
3534nnzd 9123 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
3635adantr 272 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
37 dvdstr 11426 . . . . . . . . . . . . . 14 ((𝑝 ∈ ℤ ∧ ((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
3826, 36, 19, 37syl3anc 1199 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
3924, 38mpan2d 422 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝 ∥ (𝐴𝑁)))
40 simpr 109 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ)
41 simpll1 1003 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ)
4215adantr 272 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ)
43 prmdvdsexp 11722 . . . . . . . . . . . . 13 ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (𝐴𝑁) ↔ 𝑝𝐴))
4440, 41, 42, 43syl3anc 1199 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴𝑁) ↔ 𝑝𝐴))
4539, 44sylibd 148 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝𝐴))
4623simprd 113 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴𝑁) gcd 𝐵) ∥ 𝐵)
47 dvdstr 11426 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ ((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
4826, 36, 21, 47syl3anc 1199 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ∧ ((𝐴𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
4946, 48mpan2d 422 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → 𝑝𝐵))
5045, 49jcad 303 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝑝𝐴𝑝𝐵)))
51 dvdsgcd 11596 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
5226, 41, 21, 51syl3anc 1199 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝𝐴𝑝𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵)))
53 nprmdvds1 11716 . . . . . . . . . . . . 13 (𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1)
54 breq2 3901 . . . . . . . . . . . . . 14 ((𝐴 gcd 𝐵) = 1 → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1))
5554notbid 639 . . . . . . . . . . . . 13 ((𝐴 gcd 𝐵) = 1 → (¬ 𝑝 ∥ (𝐴 gcd 𝐵) ↔ ¬ 𝑝 ∥ 1))
5653, 55syl5ibrcom 156 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → ((𝐴 gcd 𝐵) = 1 → ¬ 𝑝 ∥ (𝐴 gcd 𝐵)))
5756necon2ad 2340 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
5857adantl 273 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
5950, 52, 583syld 57 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
6059rexlimdva 2524 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1))
61 gcdn0cl 11547 . . . . . . . . . 10 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
62613adantl3 1122 . . . . . . . . 9 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ)
63 eluz2b3 9347 . . . . . . . . . 10 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1))
6463baib 887 . . . . . . . . 9 ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ≠ 1))
6562, 64syl 14 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ≠ 1))
6660, 65sylibrd 168 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
6713, 66syl5 32 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) → (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
68 exprmfct 11714 . . . . . . 7 ((𝐴 gcd 𝐵) ∈ (ℤ‘2) → ∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵))
69 gcddvds 11548 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
7041, 21, 69syl2anc 406 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵))
7170simpld 111 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐴)
72 iddvdsexp 11413 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∥ (𝐴𝑁))
7341, 42, 72syl2anc 406 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝐴𝑁))
7462nnzd 9123 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℤ)
7574adantr 272 . . . . . . . . . . . . . 14 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∈ ℤ)
76 dvdstr 11426 . . . . . . . . . . . . . 14 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → (((𝐴 gcd 𝐵) ∥ 𝐴𝐴 ∥ (𝐴𝑁)) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁)))
7775, 41, 19, 76syl3anc 1199 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴 gcd 𝐵) ∥ 𝐴𝐴 ∥ (𝐴𝑁)) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁)))
7871, 73, 77mp2and 427 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ (𝐴𝑁))
79 dvdstr 11426 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
8026, 75, 19, 79syl3anc 1199 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴𝑁)) → 𝑝 ∥ (𝐴𝑁)))
8178, 80mpan2d 422 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝 ∥ (𝐴𝑁)))
8270simprd 113 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐵)
83 dvdstr 11426 . . . . . . . . . . . . 13 ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
8426, 75, 21, 83syl3anc 1199 . . . . . . . . . . . 12 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝𝐵))
8582, 84mpan2d 422 . . . . . . . . . . 11 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝𝐵))
8681, 85jcad 303 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵)))
87 dvdsgcd 11596 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ (𝐴𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵) → 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
8826, 19, 21, 87syl3anc 1199 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴𝑁) ∧ 𝑝𝐵) → 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
89 breq2 3901 . . . . . . . . . . . . . 14 (((𝐴𝑁) gcd 𝐵) = 1 → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ↔ 𝑝 ∥ 1))
9089notbid 639 . . . . . . . . . . . . 13 (((𝐴𝑁) gcd 𝐵) = 1 → (¬ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵) ↔ ¬ 𝑝 ∥ 1))
9153, 90syl5ibrcom 156 . . . . . . . . . . . 12 (𝑝 ∈ ℙ → (((𝐴𝑁) gcd 𝐵) = 1 → ¬ 𝑝 ∥ ((𝐴𝑁) gcd 𝐵)))
9291necon2ad 2340 . . . . . . . . . . 11 (𝑝 ∈ ℙ → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9392adantl 273 . . . . . . . . . 10 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴𝑁) gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9486, 88, 933syld 57 . . . . . . . . 9 ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
9594rexlimdva 2524 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ≠ 1))
96 eluz2b3 9347 . . . . . . . . . 10 (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ (((𝐴𝑁) gcd 𝐵) ∈ ℕ ∧ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9796baib 887 . . . . . . . . 9 (((𝐴𝑁) gcd 𝐵) ∈ ℕ → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9834, 97syl 14 . . . . . . . 8 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ ((𝐴𝑁) gcd 𝐵) ≠ 1))
9995, 98sylibrd 168 . . . . . . 7 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2)))
10068, 99syl5 32 . . . . . 6 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ‘2) → ((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2)))
10167, 100impbid 128 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ∈ (ℤ‘2) ↔ (𝐴 gcd 𝐵) ∈ (ℤ‘2)))
102101, 98, 653bitr3d 217 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1))
103 simp1 964 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℤ)
104 simp3 966 . . . . . . . . . . 11 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ)
105104nnnn0d 8981 . . . . . . . . . 10 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ0)
106103, 105, 17syl2anc 406 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴𝑁) ∈ ℤ)
107 simp2 965 . . . . . . . . 9 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈ ℤ)
108106, 107gcdcld 11553 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 𝐵) ∈ ℕ0)
109108nn0zd 9122 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴𝑁) gcd 𝐵) ∈ ℤ)
110 1zzd 9032 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈ ℤ)
111 zdceq 9077 . . . . . . 7 ((((𝐴𝑁) gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → DECID ((𝐴𝑁) gcd 𝐵) = 1)
112109, 110, 111syl2anc 406 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → DECID ((𝐴𝑁) gcd 𝐵) = 1)
113103, 107gcdcld 11553 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ0)
114113nn0zd 9122 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ)
115 zdceq 9077 . . . . . . 7 (((𝐴 gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℤ) → DECID (𝐴 gcd 𝐵) = 1)
116114, 110, 115syl2anc 406 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → DECID (𝐴 gcd 𝐵) = 1)
117 nebidc 2363 . . . . . 6 (DECID ((𝐴𝑁) gcd 𝐵) = 1 → (DECID (𝐴 gcd 𝐵) = 1 → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1))))
118112, 116, 117sylc 62 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1)))
119118adantr 272 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1)))
120102, 119mpbird 166 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬ (𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
121120ex 114 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬ (𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)))
122 gcdmndc 11533 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → DECID (𝐴 = 0 ∧ 𝐵 = 0))
123 exmiddc 804 . . . 4 (DECID (𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
124122, 123syl 14 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
1251243adant3 984 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0)))
12612, 121, 125mpjaod 690 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 680  DECID wdc 802  w3a 945   = wceq 1314  wcel 1463  wne 2283  wrex 2392   class class class wbr 3897  cfv 5091  (class class class)co 5740  cc 7582  0cc0 7584  1c1 7585  cn 8677  2c2 8728  0cn0 8928  cz 9005  cuz 9275  cexp 10232  cdvds 11389   gcd cgcd 11531  cprime 11684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4011  ax-sep 4014  ax-nul 4022  ax-pow 4066  ax-pr 4099  ax-un 4323  ax-setind 4420  ax-iinf 4470  ax-cnex 7675  ax-resscn 7676  ax-1cn 7677  ax-1re 7678  ax-icn 7679  ax-addcl 7680  ax-addrcl 7681  ax-mulcl 7682  ax-mulrcl 7683  ax-addcom 7684  ax-mulcom 7685  ax-addass 7686  ax-mulass 7687  ax-distr 7688  ax-i2m1 7689  ax-0lt1 7690  ax-1rid 7691  ax-0id 7692  ax-rnegex 7693  ax-precex 7694  ax-cnre 7695  ax-pre-ltirr 7696  ax-pre-ltwlin 7697  ax-pre-lttrn 7698  ax-pre-apti 7699  ax-pre-ltadd 7700  ax-pre-mulgt0 7701  ax-pre-mulext 7702  ax-arch 7703  ax-caucvg 7704
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-ne 2284  df-nel 2379  df-ral 2396  df-rex 2397  df-reu 2398  df-rmo 2399  df-rab 2400  df-v 2660  df-sbc 2881  df-csb 2974  df-dif 3041  df-un 3043  df-in 3045  df-ss 3052  df-nul 3332  df-if 3443  df-pw 3480  df-sn 3501  df-pr 3502  df-op 3504  df-uni 3705  df-int 3740  df-iun 3783  df-br 3898  df-opab 3958  df-mpt 3959  df-tr 3995  df-id 4183  df-po 4186  df-iso 4187  df-iord 4256  df-on 4258  df-ilim 4259  df-suc 4261  df-iom 4473  df-xp 4513  df-rel 4514  df-cnv 4515  df-co 4516  df-dm 4517  df-rn 4518  df-res 4519  df-ima 4520  df-iota 5056  df-fun 5093  df-fn 5094  df-f 5095  df-f1 5096  df-fo 5097  df-f1o 5098  df-fv 5099  df-riota 5696  df-ov 5743  df-oprab 5744  df-mpo 5745  df-1st 6004  df-2nd 6005  df-recs 6168  df-frec 6254  df-1o 6279  df-2o 6280  df-er 6395  df-en 6601  df-sup 6837  df-pnf 7766  df-mnf 7767  df-xr 7768  df-ltxr 7769  df-le 7770  df-sub 7899  df-neg 7900  df-reap 8300  df-ap 8307  df-div 8393  df-inn 8678  df-2 8736  df-3 8737  df-4 8738  df-n0 8929  df-z 9006  df-uz 9276  df-q 9361  df-rp 9391  df-fz 9731  df-fzo 9860  df-fl 9983  df-mod 10036  df-seqfrec 10159  df-exp 10233  df-cj 10554  df-re 10555  df-im 10556  df-rsqrt 10710  df-abs 10711  df-dvds 11390  df-gcd 11532  df-prm 11685
This theorem is referenced by:  rpexp1i  11728  phiprmpw  11793
  Copyright terms: Public domain W3C validator