| Step | Hyp | Ref
| Expression |
| 1 | | 0exp 10666 |
. . . . . 6
⊢ (𝑁 ∈ ℕ →
(0↑𝑁) =
0) |
| 2 | 1 | oveq1d 5937 |
. . . . 5
⊢ (𝑁 ∈ ℕ →
((0↑𝑁) gcd 0) = (0 gcd
0)) |
| 3 | 2 | eqeq1d 2205 |
. . . 4
⊢ (𝑁 ∈ ℕ →
(((0↑𝑁) gcd 0) = 1
↔ (0 gcd 0) = 1)) |
| 4 | | oveq1 5929 |
. . . . . . 7
⊢ (𝐴 = 0 → (𝐴↑𝑁) = (0↑𝑁)) |
| 5 | | oveq12 5931 |
. . . . . . 7
⊢ (((𝐴↑𝑁) = (0↑𝑁) ∧ 𝐵 = 0) → ((𝐴↑𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0)) |
| 6 | 4, 5 | sylan 283 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴↑𝑁) gcd 𝐵) = ((0↑𝑁) gcd 0)) |
| 7 | 6 | eqeq1d 2205 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ ((0↑𝑁) gcd 0) = 1)) |
| 8 | | oveq12 5931 |
. . . . . 6
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 gcd 𝐵) = (0 gcd 0)) |
| 9 | 8 | eqeq1d 2205 |
. . . . 5
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 gcd 𝐵) = 1 ↔ (0 gcd 0) =
1)) |
| 10 | 7, 9 | bibi12d 235 |
. . . 4
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → ((((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((0↑𝑁) gcd 0) = 1 ↔ (0 gcd 0) =
1))) |
| 11 | 3, 10 | syl5ibrcom 157 |
. . 3
⊢ (𝑁 ∈ ℕ → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))) |
| 12 | 11 | 3ad2ant3 1022 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))) |
| 13 | | exprmfct 12306 |
. . . . . . 7
⊢ (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵)) |
| 14 | | simpl1 1002 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℤ) |
| 15 | | simpl3 1004 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈ ℕ) |
| 16 | 15 | nnnn0d 9302 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝑁 ∈
ℕ0) |
| 17 | | zexpcl 10646 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ0)
→ (𝐴↑𝑁) ∈
ℤ) |
| 18 | 14, 16, 17 | syl2anc 411 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴↑𝑁) ∈ ℤ) |
| 19 | 18 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴↑𝑁) ∈ ℤ) |
| 20 | | simpl2 1003 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐵 ∈ ℤ) |
| 21 | 20 | adantr 276 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐵 ∈ ℤ) |
| 22 | | gcddvds 12130 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴↑𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → (((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵)) |
| 23 | 19, 21, 22 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵)) |
| 24 | 23 | simpld 112 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁)) |
| 25 | | prmz 12279 |
. . . . . . . . . . . . . . 15
⊢ (𝑝 ∈ ℙ → 𝑝 ∈
ℤ) |
| 26 | 25 | adantl 277 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℤ) |
| 27 | | simpr 110 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ¬ (𝐴 = 0 ∧ 𝐵 = 0)) |
| 28 | 14 | zcnd 9449 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → 𝐴 ∈ ℂ) |
| 29 | | expeq0 10662 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) |
| 30 | 28, 15, 29 | syl2anc 411 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴↑𝑁) = 0 ↔ 𝐴 = 0)) |
| 31 | 30 | anbi1d 465 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) = 0 ∧ 𝐵 = 0) ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 32 | 27, 31 | mtbird 674 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ¬ ((𝐴↑𝑁) = 0 ∧ 𝐵 = 0)) |
| 33 | | gcdn0cl 12129 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐴↑𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬ ((𝐴↑𝑁) = 0 ∧ 𝐵 = 0)) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℕ) |
| 34 | 18, 20, 32, 33 | syl21anc 1248 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℕ) |
| 35 | 34 | nnzd 9447 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ) |
| 36 | 35 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ) |
| 37 | | dvdstr 11993 |
. . . . . . . . . . . . . 14
⊢ ((𝑝 ∈ ℤ ∧ ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → ((𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁)) → 𝑝 ∥ (𝐴↑𝑁))) |
| 38 | 26, 36, 19, 37 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ (𝐴↑𝑁)) → 𝑝 ∥ (𝐴↑𝑁))) |
| 39 | 24, 38 | mpan2d 428 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → 𝑝 ∥ (𝐴↑𝑁))) |
| 40 | | simpr 110 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑝 ∈ ℙ) |
| 41 | | simpll1 1038 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∈ ℤ) |
| 42 | 15 | adantr 276 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝑁 ∈ ℕ) |
| 43 | | prmdvdsexp 12316 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑝 ∥ (𝐴↑𝑁) ↔ 𝑝 ∥ 𝐴)) |
| 44 | 40, 41, 42, 43 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴↑𝑁) ↔ 𝑝 ∥ 𝐴)) |
| 45 | 39, 44 | sylibd 149 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → 𝑝 ∥ 𝐴)) |
| 46 | 23 | simprd 114 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵) |
| 47 | | dvdstr 11993 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝 ∥ 𝐵)) |
| 48 | 26, 36, 21, 47 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ∧ ((𝐴↑𝑁) gcd 𝐵) ∥ 𝐵) → 𝑝 ∥ 𝐵)) |
| 49 | 46, 48 | mpan2d 428 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → 𝑝 ∥ 𝐵)) |
| 50 | 45, 49 | jcad 307 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → (𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵))) |
| 51 | | dvdsgcd 12179 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵))) |
| 52 | 26, 41, 21, 51 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ 𝐴 ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ (𝐴 gcd 𝐵))) |
| 53 | | nprmdvds1 12308 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ℙ → ¬
𝑝 ∥
1) |
| 54 | | breq2 4037 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 gcd 𝐵) = 1 → (𝑝 ∥ (𝐴 gcd 𝐵) ↔ 𝑝 ∥ 1)) |
| 55 | 54 | notbid 668 |
. . . . . . . . . . . . 13
⊢ ((𝐴 gcd 𝐵) = 1 → (¬ 𝑝 ∥ (𝐴 gcd 𝐵) ↔ ¬ 𝑝 ∥ 1)) |
| 56 | 53, 55 | syl5ibrcom 157 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℙ → ((𝐴 gcd 𝐵) = 1 → ¬ 𝑝 ∥ (𝐴 gcd 𝐵))) |
| 57 | 56 | necon2ad 2424 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) |
| 58 | 57 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) |
| 59 | 50, 52, 58 | 3syld 57 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) |
| 60 | 59 | rexlimdva 2614 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ≠ 1)) |
| 61 | | gcdn0cl 12129 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) |
| 62 | 61 | 3adantl3 1157 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℕ) |
| 63 | | eluz2b3 9678 |
. . . . . . . . . 10
⊢ ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴 gcd 𝐵) ∈ ℕ ∧ (𝐴 gcd 𝐵) ≠ 1)) |
| 64 | 63 | baib 920 |
. . . . . . . . 9
⊢ ((𝐴 gcd 𝐵) ∈ ℕ → ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
↔ (𝐴 gcd 𝐵) ≠ 1)) |
| 65 | 62, 64 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
↔ (𝐴 gcd 𝐵) ≠ 1)) |
| 66 | 60, 65 | sylibrd 169 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → (𝐴 gcd 𝐵) ∈
(ℤ≥‘2))) |
| 67 | 13, 66 | syl5 32 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
→ (𝐴 gcd 𝐵) ∈
(ℤ≥‘2))) |
| 68 | | exprmfct 12306 |
. . . . . . 7
⊢ ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
→ ∃𝑝 ∈
ℙ 𝑝 ∥ (𝐴 gcd 𝐵)) |
| 69 | | gcddvds 12130 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 70 | 41, 21, 69 | syl2anc 411 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 71 | 70 | simpld 112 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
| 72 | | iddvdsexp 11980 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∥ (𝐴↑𝑁)) |
| 73 | 41, 42, 72 | syl2anc 411 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → 𝐴 ∥ (𝐴↑𝑁)) |
| 74 | 62 | nnzd 9447 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (𝐴 gcd 𝐵) ∈ ℤ) |
| 75 | 74 | adantr 276 |
. . . . . . . . . . . . . 14
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∈ ℤ) |
| 76 | | dvdstr 11993 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ 𝐴 ∥ (𝐴↑𝑁)) → (𝐴 gcd 𝐵) ∥ (𝐴↑𝑁))) |
| 77 | 75, 41, 19, 76 | syl3anc 1249 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ 𝐴 ∥ (𝐴↑𝑁)) → (𝐴 gcd 𝐵) ∥ (𝐴↑𝑁))) |
| 78 | 71, 73, 77 | mp2and 433 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ (𝐴↑𝑁)) |
| 79 | | dvdstr 11993 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴↑𝑁)) → 𝑝 ∥ (𝐴↑𝑁))) |
| 80 | 26, 75, 19, 79 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ (𝐴↑𝑁)) → 𝑝 ∥ (𝐴↑𝑁))) |
| 81 | 78, 80 | mpan2d 428 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝 ∥ (𝐴↑𝑁))) |
| 82 | 70 | simprd 114 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 83 | | dvdstr 11993 |
. . . . . . . . . . . . 13
⊢ ((𝑝 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝 ∥ 𝐵)) |
| 84 | 26, 75, 21, 83 | syl3anc 1249 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴 gcd 𝐵) ∧ (𝐴 gcd 𝐵) ∥ 𝐵) → 𝑝 ∥ 𝐵)) |
| 85 | 82, 84 | mpan2d 428 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → 𝑝 ∥ 𝐵)) |
| 86 | 81, 85 | jcad 307 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → (𝑝 ∥ (𝐴↑𝑁) ∧ 𝑝 ∥ 𝐵))) |
| 87 | | dvdsgcd 12179 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℤ ∧ (𝐴↑𝑁) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝑝 ∥ (𝐴↑𝑁) ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵))) |
| 88 | 26, 19, 21, 87 | syl3anc 1249 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → ((𝑝 ∥ (𝐴↑𝑁) ∧ 𝑝 ∥ 𝐵) → 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵))) |
| 89 | | breq2 4037 |
. . . . . . . . . . . . . 14
⊢ (((𝐴↑𝑁) gcd 𝐵) = 1 → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ↔ 𝑝 ∥ 1)) |
| 90 | 89 | notbid 668 |
. . . . . . . . . . . . 13
⊢ (((𝐴↑𝑁) gcd 𝐵) = 1 → (¬ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) ↔ ¬ 𝑝 ∥ 1)) |
| 91 | 53, 90 | syl5ibrcom 157 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ ℙ → (((𝐴↑𝑁) gcd 𝐵) = 1 → ¬ 𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵))) |
| 92 | 91 | necon2ad 2424 |
. . . . . . . . . . 11
⊢ (𝑝 ∈ ℙ → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) |
| 93 | 92 | adantl 277 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ ((𝐴↑𝑁) gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) |
| 94 | 86, 88, 93 | 3syld 57 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) ∧ 𝑝 ∈ ℙ) → (𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) |
| 95 | 94 | rexlimdva 2614 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) |
| 96 | | eluz2b3 9678 |
. . . . . . . . . 10
⊢ (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
↔ (((𝐴↑𝑁) gcd 𝐵) ∈ ℕ ∧ ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) |
| 97 | 96 | baib 920 |
. . . . . . . . 9
⊢ (((𝐴↑𝑁) gcd 𝐵) ∈ ℕ → (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) |
| 98 | 34, 97 | syl 14 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
↔ ((𝐴↑𝑁) gcd 𝐵) ≠ 1)) |
| 99 | 95, 98 | sylibrd 169 |
. . . . . . 7
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (∃𝑝 ∈ ℙ 𝑝 ∥ (𝐴 gcd 𝐵) → ((𝐴↑𝑁) gcd 𝐵) ∈
(ℤ≥‘2))) |
| 100 | 68, 99 | syl5 32 |
. . . . . 6
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((𝐴 gcd 𝐵) ∈ (ℤ≥‘2)
→ ((𝐴↑𝑁) gcd 𝐵) ∈
(ℤ≥‘2))) |
| 101 | 67, 100 | impbid 129 |
. . . . 5
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) ∈ (ℤ≥‘2)
↔ (𝐴 gcd 𝐵) ∈
(ℤ≥‘2))) |
| 102 | 101, 98, 65 | 3bitr3d 218 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1)) |
| 103 | | simp1 999 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈
ℤ) |
| 104 | | simp3 1001 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ) |
| 105 | 104 | nnnn0d 9302 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈
ℕ0) |
| 106 | 103, 105,
17 | syl2anc 411 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴↑𝑁) ∈ ℤ) |
| 107 | | simp2 1000 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐵 ∈
ℤ) |
| 108 | 106, 107 | gcdcld 12135 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd 𝐵) ∈
ℕ0) |
| 109 | 108 | nn0zd 9446 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴↑𝑁) gcd 𝐵) ∈ ℤ) |
| 110 | | 1zzd 9353 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 1 ∈
ℤ) |
| 111 | | zdceq 9401 |
. . . . . . 7
⊢ ((((𝐴↑𝑁) gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℤ)
→ DECID ((𝐴↑𝑁) gcd 𝐵) = 1) |
| 112 | 109, 110,
111 | syl2anc 411 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
DECID ((𝐴↑𝑁) gcd 𝐵) = 1) |
| 113 | 103, 107 | gcdcld 12135 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∈
ℕ0) |
| 114 | 113 | nn0zd 9446 |
. . . . . . 7
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ) |
| 115 | | zdceq 9401 |
. . . . . . 7
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 1 ∈ ℤ)
→ DECID (𝐴 gcd 𝐵) = 1) |
| 116 | 114, 110,
115 | syl2anc 411 |
. . . . . 6
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
DECID (𝐴 gcd
𝐵) = 1) |
| 117 | | nebidc 2447 |
. . . . . 6
⊢
(DECID ((𝐴↑𝑁) gcd 𝐵) = 1 → (DECID (𝐴 gcd 𝐵) = 1 → ((((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴↑𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1)))) |
| 118 | 112, 116,
117 | sylc 62 |
. . . . 5
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) →
((((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴↑𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1))) |
| 119 | 118 | adantr 276 |
. . . 4
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → ((((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1) ↔ (((𝐴↑𝑁) gcd 𝐵) ≠ 1 ↔ (𝐴 gcd 𝐵) ≠ 1))) |
| 120 | 102, 119 | mpbird 167 |
. . 3
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ¬
(𝐴 = 0 ∧ 𝐵 = 0)) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) |
| 121 | 120 | ex 115 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (¬
(𝐴 = 0 ∧ 𝐵 = 0) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1))) |
| 122 | | gcdmndc 12122 |
. . . 4
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) →
DECID (𝐴 = 0
∧ 𝐵 =
0)) |
| 123 | | exmiddc 837 |
. . . 4
⊢
(DECID (𝐴 = 0 ∧ 𝐵 = 0) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 124 | 122, 123 | syl 14 |
. . 3
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 125 | 124 | 3adant3 1019 |
. 2
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 = 0 ∧ 𝐵 = 0) ∨ ¬ (𝐴 = 0 ∧ 𝐵 = 0))) |
| 126 | 12, 121, 125 | mpjaod 719 |
1
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (((𝐴↑𝑁) gcd 𝐵) = 1 ↔ (𝐴 gcd 𝐵) = 1)) |