ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablcmnd GIF version

Theorem ablcmnd 13422
Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
ablcmnd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablcmnd (𝜑𝐺 ∈ CMnd)

Proof of Theorem ablcmnd
StepHypRef Expression
1 ablcmnd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablcmn 13421 . 2 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
31, 2syl 14 1 (𝜑𝐺 ∈ CMnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2167  CMndccmn 13414  Abelcabl 13415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-in 3163  df-abl 13417
This theorem is referenced by:  ringcmnd  13591
  Copyright terms: Public domain W3C validator