ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ablcmnd GIF version

Theorem ablcmnd 13837
Description: An Abelian group is a commutative monoid. (Contributed by SN, 1-Jun-2024.)
Hypothesis
Ref Expression
ablcmnd.1 (𝜑𝐺 ∈ Abel)
Assertion
Ref Expression
ablcmnd (𝜑𝐺 ∈ CMnd)

Proof of Theorem ablcmnd
StepHypRef Expression
1 ablcmnd.1 . 2 (𝜑𝐺 ∈ Abel)
2 ablcmn 13836 . 2 (𝐺 ∈ Abel → 𝐺 ∈ CMnd)
31, 2syl 14 1 (𝜑𝐺 ∈ CMnd)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2200  CMndccmn 13829  Abelcabl 13830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-abl 13832
This theorem is referenced by:  ringcmnd  14006
  Copyright terms: Public domain W3C validator