| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscmn | GIF version | ||
| Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| iscmn.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| iscmn | ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5627 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 2 | iscmn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2280 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 4 | raleq 2728 | . . . . 5 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) | |
| 5 | 4 | raleqbi1dv 2740 | . . . 4 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
| 7 | fveq2 5627 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 8 | iscmn.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | eqtr4di 2280 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 10 | 9 | oveqd 6018 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
| 11 | 9 | oveqd 6018 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
| 12 | 10, 11 | eqeq12d 2244 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 13 | 12 | 2ralbidv 2554 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 14 | 6, 13 | bitrd 188 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 15 | df-cmn 13823 | . 2 ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥)} | |
| 16 | 14, 15 | elrab2 2962 | 1 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ‘cfv 5318 (class class class)co 6001 Basecbs 13032 +gcplusg 13110 Mndcmnd 13449 CMndccmn 13821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-un 3201 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-iota 5278 df-fv 5326 df-ov 6004 df-cmn 13823 |
| This theorem is referenced by: isabl2 13831 cmnpropd 13832 iscmnd 13835 cmnmnd 13838 cmncom 13839 ghmcmn 13864 iscrng2 13978 |
| Copyright terms: Public domain | W3C validator |