| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > iscmn | GIF version | ||
| Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmn.b | ⊢ 𝐵 = (Base‘𝐺) |
| iscmn.p | ⊢ + = (+g‘𝐺) |
| Ref | Expression |
|---|---|
| iscmn | ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 5558 | . . . . 5 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺)) | |
| 2 | iscmn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 3 | 1, 2 | eqtr4di 2247 | . . . 4 ⊢ (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵) |
| 4 | raleq 2693 | . . . . 5 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) | |
| 5 | 4 | raleqbi1dv 2705 | . . . 4 ⊢ ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
| 6 | 3, 5 | syl 14 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥))) |
| 7 | fveq2 5558 | . . . . . . 7 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = (+g‘𝐺)) | |
| 8 | iscmn.p | . . . . . . 7 ⊢ + = (+g‘𝐺) | |
| 9 | 7, 8 | eqtr4di 2247 | . . . . . 6 ⊢ (𝑔 = 𝐺 → (+g‘𝑔) = + ) |
| 10 | 9 | oveqd 5939 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑥(+g‘𝑔)𝑦) = (𝑥 + 𝑦)) |
| 11 | 9 | oveqd 5939 | . . . . 5 ⊢ (𝑔 = 𝐺 → (𝑦(+g‘𝑔)𝑥) = (𝑦 + 𝑥)) |
| 12 | 10, 11 | eqeq12d 2211 | . . . 4 ⊢ (𝑔 = 𝐺 → ((𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 13 | 12 | 2ralbidv 2521 | . . 3 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 14 | 6, 13 | bitrd 188 | . 2 ⊢ (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥) ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| 15 | df-cmn 13416 | . 2 ⊢ CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g‘𝑔)𝑦) = (𝑦(+g‘𝑔)𝑥)} | |
| 16 | 14, 15 | elrab2 2923 | 1 ⊢ (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥))) |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ‘cfv 5258 (class class class)co 5922 Basecbs 12678 +gcplusg 12755 Mndcmnd 13057 CMndccmn 13414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-un 3161 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-iota 5219 df-fv 5266 df-ov 5925 df-cmn 13416 |
| This theorem is referenced by: isabl2 13424 cmnpropd 13425 iscmnd 13428 cmnmnd 13431 cmncom 13432 ghmcmn 13457 iscrng2 13571 |
| Copyright terms: Public domain | W3C validator |