ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscmn GIF version

Theorem iscmn 13423
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
iscmn.b 𝐵 = (Base‘𝐺)
iscmn.p + = (+g𝐺)
Assertion
Ref Expression
iscmn (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem iscmn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5558 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 iscmn.b . . . . 5 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2247 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 raleq 2693 . . . . 5 ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
54raleqbi1dv 2705 . . . 4 ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
63, 5syl 14 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
7 fveq2 5558 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 iscmn.p . . . . . . 7 + = (+g𝐺)
97, 8eqtr4di 2247 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
109oveqd 5939 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
119oveqd 5939 . . . . 5 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
1210, 11eqeq12d 2211 . . . 4 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥)))
13122ralbidv 2521 . . 3 (𝑔 = 𝐺 → (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
146, 13bitrd 188 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
15 df-cmn 13416 . 2 CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)}
1614, 15elrab2 2923 1 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  cfv 5258  (class class class)co 5922  Basecbs 12678  +gcplusg 12755  Mndcmnd 13057  CMndccmn 13414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925  df-cmn 13416
This theorem is referenced by:  isabl2  13424  cmnpropd  13425  iscmnd  13428  cmnmnd  13431  cmncom  13432  ghmcmn  13457  iscrng2  13571
  Copyright terms: Public domain W3C validator