ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iscmn GIF version

Theorem iscmn 13363
Description: The predicate "is a commutative monoid". (Contributed by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
iscmn.b 𝐵 = (Base‘𝐺)
iscmn.p + = (+g𝐺)
Assertion
Ref Expression
iscmn (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐺,𝑦
Allowed substitution hints:   + (𝑥,𝑦)

Proof of Theorem iscmn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 fveq2 5554 . . . . 5 (𝑔 = 𝐺 → (Base‘𝑔) = (Base‘𝐺))
2 iscmn.b . . . . 5 𝐵 = (Base‘𝐺)
31, 2eqtr4di 2244 . . . 4 (𝑔 = 𝐺 → (Base‘𝑔) = 𝐵)
4 raleq 2690 . . . . 5 ((Base‘𝑔) = 𝐵 → (∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
54raleqbi1dv 2702 . . . 4 ((Base‘𝑔) = 𝐵 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
63, 5syl 14 . . 3 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)))
7 fveq2 5554 . . . . . . 7 (𝑔 = 𝐺 → (+g𝑔) = (+g𝐺))
8 iscmn.p . . . . . . 7 + = (+g𝐺)
97, 8eqtr4di 2244 . . . . . 6 (𝑔 = 𝐺 → (+g𝑔) = + )
109oveqd 5935 . . . . 5 (𝑔 = 𝐺 → (𝑥(+g𝑔)𝑦) = (𝑥 + 𝑦))
119oveqd 5935 . . . . 5 (𝑔 = 𝐺 → (𝑦(+g𝑔)𝑥) = (𝑦 + 𝑥))
1210, 11eqeq12d 2208 . . . 4 (𝑔 = 𝐺 → ((𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ (𝑥 + 𝑦) = (𝑦 + 𝑥)))
13122ralbidv 2518 . . 3 (𝑔 = 𝐺 → (∀𝑥𝐵𝑦𝐵 (𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
146, 13bitrd 188 . 2 (𝑔 = 𝐺 → (∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥) ↔ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
15 df-cmn 13356 . 2 CMnd = {𝑔 ∈ Mnd ∣ ∀𝑥 ∈ (Base‘𝑔)∀𝑦 ∈ (Base‘𝑔)(𝑥(+g𝑔)𝑦) = (𝑦(+g𝑔)𝑥)}
1614, 15elrab2 2919 1 (𝐺 ∈ CMnd ↔ (𝐺 ∈ Mnd ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 + 𝑦) = (𝑦 + 𝑥)))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  cfv 5254  (class class class)co 5918  Basecbs 12618  +gcplusg 12695  Mndcmnd 12997  CMndccmn 13354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-un 3157  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-iota 5215  df-fv 5262  df-ov 5921  df-cmn 13356
This theorem is referenced by:  isabl2  13364  cmnpropd  13365  iscmnd  13368  cmnmnd  13371  cmncom  13372  ghmcmn  13397  iscrng2  13511
  Copyright terms: Public domain W3C validator