Theorem List for Intuitionistic Logic Explorer - 8201-8300 *Has distinct variable
group(s)
| Type | Label | Description |
| Statement |
| |
| Theorem | lensymd 8201 |
'Less than or equal to' implies 'not less than'. (Contributed by
Glauco Siliprandi, 11-Dec-2019.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵) ⇒ ⊢ (𝜑 → ¬ 𝐵 < 𝐴) |
| |
| Theorem | mulgt0d 8202 |
The product of two positive numbers is positive. (Contributed by
Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐴)
& ⊢ (𝜑 → 0 < 𝐵) ⇒ ⊢ (𝜑 → 0 < (𝐴 · 𝐵)) |
| |
| Theorem | letrd 8203 |
Transitive law deduction for 'less than or equal to'. (Contributed by
NM, 20-May-2005.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → 𝐵 ≤ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ≤ 𝐶) |
| |
| Theorem | lelttrd 8204 |
Transitive law deduction for 'less than or equal to', 'less than'.
(Contributed by NM, 8-Jan-2006.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 ≤ 𝐵)
& ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) |
| |
| Theorem | lttrd 8205 |
Transitive law deduction for 'less than'. (Contributed by NM,
9-Jan-2006.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐴 < 𝐵)
& ⊢ (𝜑 → 𝐵 < 𝐶) ⇒ ⊢ (𝜑 → 𝐴 < 𝐶) |
| |
| Theorem | 0lt1 8206 |
0 is less than 1. Theorem I.21 of [Apostol] p.
20. Part of definition
11.2.7(vi) of [HoTT], p. (varies).
(Contributed by NM, 17-Jan-1997.)
|
| ⊢ 0 < 1 |
| |
| Theorem | ltntri 8207 |
Negative trichotomy property for real numbers. It is well known that we
cannot prove real number trichotomy, 𝐴 < 𝐵 ∨ 𝐴 = 𝐵 ∨ 𝐵 < 𝐴. Does
that mean there is a pair of real numbers where none of those hold (that
is, where we can refute each of those three relationships)? Actually, no,
as shown here. This is another example of distinguishing between being
unable to prove something, or being able to refute it. (Contributed by
Jim Kingdon, 13-Aug-2023.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ¬ (¬ 𝐴 < 𝐵 ∧ ¬ 𝐴 = 𝐵 ∧ ¬ 𝐵 < 𝐴)) |
| |
| 4.2.5 Initial properties of the complex
numbers
|
| |
| Theorem | mul12 8208 |
Commutative/associative law for multiplication. (Contributed by NM,
30-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
| |
| Theorem | mul32 8209 |
Commutative/associative law. (Contributed by NM, 8-Oct-1999.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| |
| Theorem | mul31 8210 |
Commutative/associative law. (Contributed by Scott Fenton,
3-Jan-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) |
| |
| Theorem | mul4 8211 |
Rearrangement of 4 factors. (Contributed by NM, 8-Oct-1999.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| |
| Theorem | muladd11 8212 |
A simple product of sums expansion. (Contributed by NM, 21-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((1 + 𝐴) · (1 + 𝐵)) = ((1 + 𝐴) + (𝐵 + (𝐴 · 𝐵)))) |
| |
| Theorem | 1p1times 8213 |
Two times a number. (Contributed by NM, 18-May-1999.) (Revised by Mario
Carneiro, 27-May-2016.)
|
| ⊢ (𝐴 ∈ ℂ → ((1 + 1) ·
𝐴) = (𝐴 + 𝐴)) |
| |
| Theorem | peano2cn 8214 |
A theorem for complex numbers analogous the second Peano postulate
peano2 4647. (Contributed by NM, 17-Aug-2005.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 1) ∈ ℂ) |
| |
| Theorem | peano2re 8215 |
A theorem for reals analogous the second Peano postulate peano2 4647.
(Contributed by NM, 5-Jul-2005.)
|
| ⊢ (𝐴 ∈ ℝ → (𝐴 + 1) ∈ ℝ) |
| |
| Theorem | addcom 8216 |
Addition commutes. (Contributed by Jim Kingdon, 17-Jan-2020.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | addrid 8217 |
0 is an additive identity. (Contributed by Jim
Kingdon,
16-Jan-2020.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) |
| |
| Theorem | addlid 8218 |
0 is a left identity for addition. (Contributed by
Scott Fenton,
3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℂ → (0 + 𝐴) = 𝐴) |
| |
| Theorem | readdcan 8219 |
Cancellation law for addition over the reals. (Contributed by Scott
Fenton, 3-Jan-2013.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ) → ((𝐶 + 𝐴) = (𝐶 + 𝐵) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | 00id 8220 |
0 is its own additive identity. (Contributed by Scott
Fenton,
3-Jan-2013.)
|
| ⊢ (0 + 0) = 0 |
| |
| Theorem | addridi 8221 |
0 is an additive identity. (Contributed by NM,
23-Nov-1994.)
(Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (𝐴 + 0) = 𝐴 |
| |
| Theorem | addlidi 8222 |
0 is a left identity for addition. (Contributed by NM,
3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ
⇒ ⊢ (0 + 𝐴) = 𝐴 |
| |
| Theorem | addcomi 8223 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) |
| |
| Theorem | addcomli 8224 |
Addition commutes. (Contributed by Mario Carneiro, 19-Apr-2015.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ (𝐵 + 𝐴) = 𝐶 |
| |
| Theorem | mul12i 8225 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by NM, 11-May-1999.) (Proof shortened by Andrew
Salmon, 19-Nov-2011.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶)) |
| |
| Theorem | mul32i 8226 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by NM, 11-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵) |
| |
| Theorem | mul4i 8227 |
Rearrangement of 4 factors. (Contributed by NM, 16-Feb-1995.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷)) |
| |
| Theorem | addridd 8228 |
0 is an additive identity. (Contributed by Mario
Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| |
| Theorem | addlidd 8229 |
0 is a left identity for addition. (Contributed by
Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ)
⇒ ⊢ (𝜑 → (0 + 𝐴) = 𝐴) |
| |
| Theorem | addcomd 8230 |
Addition commutes. Based on ideas by Eric Schmidt. (Contributed by
Scott Fenton, 3-Jan-2013.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐵 + 𝐴)) |
| |
| Theorem | mul12d 8231 |
Commutative/associative law that swaps the first two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 · (𝐵 · 𝐶)) = (𝐵 · (𝐴 · 𝐶))) |
| |
| Theorem | mul32d 8232 |
Commutative/associative law that swaps the last two factors in a triple
product. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐴 · 𝐶) · 𝐵)) |
| |
| Theorem | mul31d 8233 |
Commutative/associative law. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · 𝐶) = ((𝐶 · 𝐵) · 𝐴)) |
| |
| Theorem | mul4d 8234 |
Rearrangement of 4 factors. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 · 𝐵) · (𝐶 · 𝐷)) = ((𝐴 · 𝐶) · (𝐵 · 𝐷))) |
| |
| Theorem | muladd11r 8235 |
A simple product of sums expansion. (Contributed by AV, 30-Jul-2021.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 1) · (𝐵 + 1)) = (((𝐴 · 𝐵) + (𝐴 + 𝐵)) + 1)) |
| |
| Theorem | comraddd 8236 |
Commute RHS addition, in deduction form. (Contributed by David A.
Wheeler, 11-Oct-2018.)
|
| ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = (𝐶 + 𝐵)) |
| |
| 4.3 Real and complex numbers - basic
operations
|
| |
| 4.3.1 Addition
|
| |
| Theorem | add12 8237 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 11-May-2004.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) |
| |
| Theorem | add32 8238 |
Commutative/associative law that swaps the last two terms in a triple sum.
(Contributed by NM, 13-Nov-1999.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add32r 8239 |
Commutative/associative law that swaps the last two terms in a triple sum,
rearranging the parentheses. (Contributed by Paul Chapman,
18-May-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 + 𝐶)) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add4 8240 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 13-Nov-1999.)
(Proof shortened by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
| |
| Theorem | add42 8241 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 12-May-2005.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) |
| |
| Theorem | add12i 8242 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶)) |
| |
| Theorem | add32i 8243 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by NM, 21-Jan-1997.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵) |
| |
| Theorem | add4i 8244 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 9-May-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷)) |
| |
| Theorem | add42i 8245 |
Rearrangement of 4 terms in a sum. (Contributed by NM, 22-Aug-1999.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐷 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵)) |
| |
| Theorem | add12d 8246 |
Commutative/associative law that swaps the first two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → (𝐴 + (𝐵 + 𝐶)) = (𝐵 + (𝐴 + 𝐶))) |
| |
| Theorem | add32d 8247 |
Commutative/associative law that swaps the last two terms in a triple
sum. (Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + 𝐶) = ((𝐴 + 𝐶) + 𝐵)) |
| |
| Theorem | add4d 8248 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
| |
| Theorem | add42d 8249 |
Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro,
27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐷 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐷 + 𝐵))) |
| |
| 4.3.2 Subtraction
|
| |
| Syntax | cmin 8250 |
Extend class notation to include subtraction.
|
| class − |
| |
| Syntax | cneg 8251 |
Extend class notation to include unary minus. The symbol - is not a
class by itself but part of a compound class definition. We do this
rather than making it a formal function since it is so commonly used.
Note: We use different symbols for unary minus (-) and subtraction
cmin 8250 (−) to prevent
syntax ambiguity. For example, looking at the
syntax definition co 5951, if we used the same symbol
then "( − 𝐴 − 𝐵) " could mean either
"− 𝐴 " minus "𝐵",
or
it could represent the (meaningless) operation of
classes "− " and "− 𝐵
" connected with "operation" "𝐴".
On the other hand, "(-𝐴 − 𝐵) " is unambiguous.
|
| class -𝐴 |
| |
| Definition | df-sub 8252* |
Define subtraction. Theorem subval 8271 shows its value (and describes how
this definition works), Theorem subaddi 8366 relates it to addition, and
Theorems subcli 8355 and resubcli 8342 prove its closure laws. (Contributed
by NM, 26-Nov-1994.)
|
| ⊢ − = (𝑥 ∈ ℂ, 𝑦 ∈ ℂ ↦ (℩𝑧 ∈ ℂ (𝑦 + 𝑧) = 𝑥)) |
| |
| Definition | df-neg 8253 |
Define the negative of a number (unary minus). We use different symbols
for unary minus (-) and subtraction (−) to prevent syntax
ambiguity. See cneg 8251 for a discussion of this. (Contributed by
NM,
10-Feb-1995.)
|
| ⊢ -𝐴 = (0 − 𝐴) |
| |
| Theorem | cnegexlem1 8254 |
Addition cancellation of a real number from two complex numbers. Lemma
for cnegex 8257. (Contributed by Eric Schmidt, 22-May-2007.)
|
| ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | cnegexlem2 8255 |
Existence of a real number which produces a real number when multiplied
by i. (Hint: zero is such a number, although we
don't need to
prove that yet). Lemma for cnegex 8257. (Contributed by Eric Schmidt,
22-May-2007.)
|
| ⊢ ∃𝑦 ∈ ℝ (i · 𝑦) ∈
ℝ |
| |
| Theorem | cnegexlem3 8256* |
Existence of real number difference. Lemma for cnegex 8257. (Contributed
by Eric Schmidt, 22-May-2007.)
|
| ⊢ ((𝑏 ∈ ℝ ∧ 𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ (𝑏 + 𝑐) = 𝑦) |
| |
| Theorem | cnegex 8257* |
Existence of the negative of a complex number. (Contributed by Eric
Schmidt, 21-May-2007.)
|
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝐴 + 𝑥) = 0) |
| |
| Theorem | cnegex2 8258* |
Existence of a left inverse for addition. (Contributed by Scott Fenton,
3-Jan-2013.)
|
| ⊢ (𝐴 ∈ ℂ → ∃𝑥 ∈ ℂ (𝑥 + 𝐴) = 0) |
| |
| Theorem | addcan 8259 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | addcan2 8260 |
Cancellation law for addition. (Contributed by NM, 30-Jul-2004.)
(Revised by Scott Fenton, 3-Jan-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | addcani 8261 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by NM, 27-Oct-1999.) (Revised by Scott Fenton,
3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶) |
| |
| Theorem | addcan2i 8262 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by NM, 14-May-2003.) (Revised by Scott Fenton,
3-Jan-2013.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵) |
| |
| Theorem | addcand 8263 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐵) = (𝐴 + 𝐶) ↔ 𝐵 = 𝐶)) |
| |
| Theorem | addcan2d 8264 |
Cancellation law for addition. Theorem I.1 of [Apostol] p. 18.
(Contributed by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ)
⇒ ⊢ (𝜑 → ((𝐴 + 𝐶) = (𝐵 + 𝐶) ↔ 𝐴 = 𝐵)) |
| |
| Theorem | addcanad 8265 |
Cancelling a term on the left-hand side of a sum in an equality.
Consequence of addcand 8263. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐵) = (𝐴 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐵 = 𝐶) |
| |
| Theorem | addcan2ad 8266 |
Cancelling a term on the right-hand side of a sum in an equality.
Consequence of addcan2d 8264. (Contributed by David Moews,
28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → (𝐴 + 𝐶) = (𝐵 + 𝐶)) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) |
| |
| Theorem | addneintrd 8267 |
Introducing a term on the left-hand side of a sum in a negated
equality. Contrapositive of addcanad 8265. Consequence of addcand 8263.
(Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ≠ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 + 𝐵) ≠ (𝐴 + 𝐶)) |
| |
| Theorem | addneintr2d 8268 |
Introducing a term on the right-hand side of a sum in a negated
equality. Contrapositive of addcan2ad 8266. Consequence of
addcan2d 8264. (Contributed by David Moews, 28-Feb-2017.)
|
| ⊢ (𝜑 → 𝐴 ∈ ℂ) & ⊢ (𝜑 → 𝐵 ∈ ℂ) & ⊢ (𝜑 → 𝐶 ∈ ℂ) & ⊢ (𝜑 → 𝐴 ≠ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 + 𝐶) ≠ (𝐵 + 𝐶)) |
| |
| Theorem | 0cnALT 8269 |
Alternate proof of 0cn 8071. (Contributed by NM, 19-Feb-2005.) (Revised
by
Mario Carneiro, 27-May-2016.) (Proof modification is discouraged.)
(New usage is discouraged.)
|
| ⊢ 0 ∈ ℂ |
| |
| Theorem | negeu 8270* |
Existential uniqueness of negatives. Theorem I.2 of [Apostol] p. 18.
(Contributed by NM, 22-Nov-1994.) (Proof shortened by Mario Carneiro,
27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ∃!𝑥 ∈ ℂ (𝐴 + 𝑥) = 𝐵) |
| |
| Theorem | subval 8271* |
Value of subtraction, which is the (unique) element 𝑥 such that
𝐵 +
𝑥 = 𝐴. (Contributed by NM, 4-Aug-2007.)
(Revised by Mario
Carneiro, 2-Nov-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) = (℩𝑥 ∈ ℂ (𝐵 + 𝑥) = 𝐴)) |
| |
| Theorem | negeq 8272 |
Equality theorem for negatives. (Contributed by NM, 10-Feb-1995.)
|
| ⊢ (𝐴 = 𝐵 → -𝐴 = -𝐵) |
| |
| Theorem | negeqi 8273 |
Equality inference for negatives. (Contributed by NM, 14-Feb-1995.)
|
| ⊢ 𝐴 = 𝐵 ⇒ ⊢ -𝐴 = -𝐵 |
| |
| Theorem | negeqd 8274 |
Equality deduction for negatives. (Contributed by NM, 14-May-1999.)
|
| ⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → -𝐴 = -𝐵) |
| |
| Theorem | nfnegd 8275 |
Deduction version of nfneg 8276. (Contributed by NM, 29-Feb-2008.)
(Revised by Mario Carneiro, 15-Oct-2016.)
|
| ⊢ (𝜑 → Ⅎ𝑥𝐴) ⇒ ⊢ (𝜑 → Ⅎ𝑥-𝐴) |
| |
| Theorem | nfneg 8276 |
Bound-variable hypothesis builder for the negative of a complex number.
(Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro,
15-Oct-2016.)
|
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥-𝐴 |
| |
| Theorem | csbnegg 8277 |
Move class substitution in and out of the negative of a number.
(Contributed by NM, 1-Mar-2008.) (Proof shortened by Andrew Salmon,
22-Oct-2011.)
|
| ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌-𝐵 = -⦋𝐴 / 𝑥⦌𝐵) |
| |
| Theorem | subcl 8278 |
Closure law for subtraction. (Contributed by NM, 10-May-1999.)
(Revised by Mario Carneiro, 21-Dec-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 − 𝐵) ∈ ℂ) |
| |
| Theorem | negcl 8279 |
Closure law for negative. (Contributed by NM, 6-Aug-2003.)
|
| ⊢ (𝐴 ∈ ℂ → -𝐴 ∈ ℂ) |
| |
| Theorem | negicn 8280 |
-i is a complex number (common case). (Contributed by
David A.
Wheeler, 7-Dec-2018.)
|
| ⊢ -i ∈ ℂ |
| |
| Theorem | subf 8281 |
Subtraction is an operation on the complex numbers. (Contributed by NM,
4-Aug-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
|
| ⊢ − :(ℂ ×
ℂ)⟶ℂ |
| |
| Theorem | subadd 8282 |
Relationship between subtraction and addition. (Contributed by NM,
20-Jan-1997.) (Revised by Mario Carneiro, 21-Dec-2013.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐵 + 𝐶) = 𝐴)) |
| |
| Theorem | subadd2 8283 |
Relationship between subtraction and addition. (Contributed by Scott
Fenton, 5-Jul-2013.) (Proof shortened by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐶 + 𝐵) = 𝐴)) |
| |
| Theorem | subsub23 8284 |
Swap subtrahend and result of subtraction. (Contributed by NM,
14-Dec-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) = 𝐶 ↔ (𝐴 − 𝐶) = 𝐵)) |
| |
| Theorem | pncan 8285 |
Cancellation law for subtraction. (Contributed by NM, 10-May-2004.)
(Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐵) = 𝐴) |
| |
| Theorem | pncan2 8286 |
Cancellation law for subtraction. (Contributed by NM, 17-Apr-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐴) = 𝐵) |
| |
| Theorem | pncan3 8287 |
Subtraction and addition of equals. (Contributed by NM, 14-Mar-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + (𝐵 − 𝐴)) = 𝐵) |
| |
| Theorem | npcan 8288 |
Cancellation law for subtraction. (Contributed by NM, 10-May-2004.)
(Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐵) = 𝐴) |
| |
| Theorem | addsubass 8289 |
Associative-type law for addition and subtraction. (Contributed by NM,
6-Aug-2003.) (Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = (𝐴 + (𝐵 − 𝐶))) |
| |
| Theorem | addsub 8290 |
Law for addition and subtraction. (Contributed by NM, 19-Aug-2001.)
(Proof shortened by Andrew Salmon, 22-Oct-2011.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) − 𝐶) = ((𝐴 − 𝐶) + 𝐵)) |
| |
| Theorem | subadd23 8291 |
Commutative/associative law for addition and subtraction. (Contributed by
NM, 1-Feb-2007.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + 𝐶) = (𝐴 + (𝐶 − 𝐵))) |
| |
| Theorem | addsub12 8292 |
Commutative/associative law for addition and subtraction. (Contributed by
NM, 8-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 + (𝐵 − 𝐶)) = (𝐵 + (𝐴 − 𝐶))) |
| |
| Theorem | 2addsub 8293 |
Law for subtraction and addition. (Contributed by NM, 20-Nov-2005.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → (((𝐴 + 𝐵) + 𝐶) − 𝐷) = (((𝐴 + 𝐶) − 𝐷) + 𝐵)) |
| |
| Theorem | addsubeq4 8294 |
Relation between sums and differences. (Contributed by Jeff Madsen,
17-Jun-2010.)
|
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) = (𝐶 + 𝐷) ↔ (𝐶 − 𝐴) = (𝐵 − 𝐷))) |
| |
| Theorem | pncan3oi 8295 |
Subtraction and addition of equals. Almost but not exactly the same as
pncan3i 8356 and pncan 8285, this order happens often when
applying
"operations to both sides" so create a theorem specifically
for it. A
deduction version of this is available as pncand 8391. (Contributed by
David A. Wheeler, 11-Oct-2018.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈
ℂ ⇒ ⊢ ((𝐴 + 𝐵) − 𝐵) = 𝐴 |
| |
| Theorem | mvrraddi 8296 |
Move RHS right addition to LHS. (Contributed by David A. Wheeler,
11-Oct-2018.)
|
| ⊢ 𝐵 ∈ ℂ & ⊢ 𝐶 ∈ ℂ & ⊢ 𝐴 = (𝐵 + 𝐶) ⇒ ⊢ (𝐴 − 𝐶) = 𝐵 |
| |
| Theorem | mvlladdi 8297 |
Move LHS left addition to RHS. (Contributed by David A. Wheeler,
11-Oct-2018.)
|
| ⊢ 𝐴 ∈ ℂ & ⊢ 𝐵 ∈ ℂ & ⊢ (𝐴 + 𝐵) = 𝐶 ⇒ ⊢ 𝐵 = (𝐶 − 𝐴) |
| |
| Theorem | subid 8298 |
Subtraction of a number from itself. (Contributed by NM, 8-Oct-1999.)
(Revised by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 𝐴) = 0) |
| |
| Theorem | subid1 8299 |
Identity law for subtraction. (Contributed by NM, 9-May-2004.) (Revised
by Mario Carneiro, 27-May-2016.)
|
| ⊢ (𝐴 ∈ ℂ → (𝐴 − 0) = 𝐴) |
| |
| Theorem | npncan 8300 |
Cancellation law for subtraction. (Contributed by NM, 8-Feb-2005.)
|
| ⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 − 𝐵) + (𝐵 − 𝐶)) = (𝐴 − 𝐶)) |