HomeHome Intuitionistic Logic Explorer
Theorem List (p. 83 of 114)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 8201-8300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdivcanap4d 8201 A cancellation law for division. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
 
Theoremdiveqap0d 8202 If a ratio is zero, the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑 → (𝐴 / 𝐵) = 0)       (𝜑𝐴 = 0)
 
Theoremdiveqap1d 8203 Equality in terms of unit ratio. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑 → (𝐴 / 𝐵) = 1)       (𝜑𝐴 = 𝐵)
 
Theoremdiveqap1ad 8204 The quotient of two complex numbers is one iff they are equal. Deduction form of diveqap1 8111. Generalization of diveqap1d 8203. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) = 1 ↔ 𝐴 = 𝐵))
 
Theoremdiveqap0ad 8205 A fraction of complex numbers is zero iff its numerator is. Deduction form of diveqap0 8088. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) = 0 ↔ 𝐴 = 0))
 
Theoremdivap1d 8206 If two complex numbers are apart, their quotient is apart from one. (Contributed by Jim Kingdon, 20-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐴 # 𝐵)       (𝜑 → (𝐴 / 𝐵) # 1)
 
Theoremdivap0bd 8207 A ratio is zero iff the numerator is zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 # 0 ↔ (𝐴 / 𝐵) # 0))
 
Theoremdivnegapd 8208 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → -(𝐴 / 𝐵) = (-𝐴 / 𝐵))
 
Theoremdivneg2apd 8209 Move negative sign inside of a division. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → -(𝐴 / 𝐵) = (𝐴 / -𝐵))
 
Theoremdiv2negapd 8210 Quotient of two negatives. (Contributed by Jim Kingdon, 19-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → (-𝐴 / -𝐵) = (𝐴 / 𝐵))
 
Theoremdivap0d 8211 The ratio of numbers apart from zero is apart from zero. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / 𝐵) # 0)
 
Theoremrecdivapd 8212 The reciprocal of a ratio. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → (1 / (𝐴 / 𝐵)) = (𝐵 / 𝐴))
 
Theoremrecdivap2d 8213 Division into a reciprocal. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → ((1 / 𝐴) / 𝐵) = (1 / (𝐴 · 𝐵)))
 
Theoremdivcanap6d 8214 Cancellation of inverted fractions. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐴)) = 1)
 
Theoremddcanapd 8215 Cancellation in a double division. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / (𝐴 / 𝐵)) = 𝐵)
 
Theoremrec11apd 8216 Reciprocal is one-to-one. (Contributed by Jim Kingdon, 3-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑𝐵 # 0)    &   (𝜑 → (1 / 𝐴) = (1 / 𝐵))       (𝜑𝐴 = 𝐵)
 
Theoremdivmulapd 8217 Relationship between division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) = 𝐶 ↔ (𝐵 · 𝐶) = 𝐴))
 
Theoremdiv32apd 8218 A commutative/associative law for division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) · 𝐶) = (𝐴 · (𝐶 / 𝐵)))
 
Theoremdiv13apd 8219 A commutative/associative law for division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)       (𝜑 → ((𝐴 / 𝐵) · 𝐶) = ((𝐶 / 𝐵) · 𝐴))
 
Theoremdivdiv32apd 8220 Swap denominators in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) / 𝐶) = ((𝐴 / 𝐶) / 𝐵))
 
Theoremdivcanap5d 8221 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐶 · 𝐴) / (𝐶 · 𝐵)) = (𝐴 / 𝐵))
 
Theoremdivcanap5rd 8222 Cancellation of common factor in a ratio. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐶) / (𝐵 · 𝐶)) = (𝐴 / 𝐵))
 
Theoremdivcanap7d 8223 Cancel equal divisors in a division. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) / (𝐵 / 𝐶)) = (𝐴 / 𝐵))
 
Theoremdmdcanapd 8224 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐵 / 𝐶) · (𝐴 / 𝐵)) = (𝐴 / 𝐶))
 
Theoremdmdcanap2d 8225 Cancellation law for division and multiplication. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐵 / 𝐶)) = (𝐴 / 𝐶))
 
Theoremdivdivap1d 8226 Division into a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐵) / 𝐶) = (𝐴 / (𝐵 · 𝐶)))
 
Theoremdivdivap2d 8227 Division by a fraction. (Contributed by Jim Kingdon, 8-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐶 # 0)       (𝜑 → (𝐴 / (𝐵 / 𝐶)) = ((𝐴 · 𝐶) / 𝐵))
 
Theoremdivmulap2d 8228 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐶 · 𝐵)))
 
Theoremdivmulap3d 8229 Relationship between division and multiplication. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 / 𝐶) = 𝐵𝐴 = (𝐵 · 𝐶)))
 
Theoremdivassapd 8230 An associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐶) = (𝐴 · (𝐵 / 𝐶)))
 
Theoremdiv12apd 8231 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → (𝐴 · (𝐵 / 𝐶)) = (𝐵 · (𝐴 / 𝐶)))
 
Theoremdiv23apd 8232 A commutative/associative law for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 · 𝐵) / 𝐶) = ((𝐴 / 𝐶) · 𝐵))
 
Theoremdivdirapd 8233 Distribution of division over addition. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴 + 𝐵) / 𝐶) = ((𝐴 / 𝐶) + (𝐵 / 𝐶)))
 
Theoremdivsubdirapd 8234 Distribution of division over subtraction. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)       (𝜑 → ((𝐴𝐵) / 𝐶) = ((𝐴 / 𝐶) − (𝐵 / 𝐶)))
 
Theoremdiv11apd 8235 One-to-one relationship for division. (Contributed by Jim Kingdon, 2-Mar-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐶 # 0)    &   (𝜑 → (𝐴 / 𝐶) = (𝐵 / 𝐶))       (𝜑𝐴 = 𝐵)
 
Theoremdivmuldivapd 8236 Multiplication of two ratios. (Contributed by Jim Kingdon, 30-Jul-2021.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ ℂ)    &   (𝜑𝐵 # 0)    &   (𝜑𝐷 # 0)       (𝜑 → ((𝐴 / 𝐵) · (𝐶 / 𝐷)) = ((𝐴 · 𝐶) / (𝐵 · 𝐷)))
 
Theoremrerecclapd 8237 Closure law for reciprocal. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐴 # 0)       (𝜑 → (1 / 𝐴) ∈ ℝ)
 
Theoremredivclapd 8238 Closure law for division of reals. (Contributed by Jim Kingdon, 29-Feb-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐵 # 0)       (𝜑 → (𝐴 / 𝐵) ∈ ℝ)
 
Theoremmvllmulapd 8239 Move LHS left multiplication to RHS. (Contributed by Jim Kingdon, 10-Jun-2020.)
(𝜑𝐴 ∈ ℂ)    &   (𝜑𝐵 ∈ ℂ)    &   (𝜑𝐴 # 0)    &   (𝜑 → (𝐴 · 𝐵) = 𝐶)       (𝜑𝐵 = (𝐶 / 𝐴))
 
3.3.9  Ordering on reals (cont.)
 
Theoremltp1 8240 A number is less than itself plus 1. (Contributed by NM, 20-Aug-2001.)
(𝐴 ∈ ℝ → 𝐴 < (𝐴 + 1))
 
Theoremlep1 8241 A number is less than or equal to itself plus 1. (Contributed by NM, 5-Jan-2006.)
(𝐴 ∈ ℝ → 𝐴 ≤ (𝐴 + 1))
 
Theoremltm1 8242 A number minus 1 is less than itself. (Contributed by NM, 9-Apr-2006.)
(𝐴 ∈ ℝ → (𝐴 − 1) < 𝐴)
 
Theoremlem1 8243 A number minus 1 is less than or equal to itself. (Contributed by Mario Carneiro, 2-Oct-2015.)
(𝐴 ∈ ℝ → (𝐴 − 1) ≤ 𝐴)
 
Theoremletrp1 8244 A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴𝐵) → 𝐴 ≤ (𝐵 + 1))
 
Theoremp1le 8245 A transitive property of plus 1 and 'less than or equal'. (Contributed by NM, 16-Aug-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐴 + 1) ≤ 𝐵) → 𝐴𝐵)
 
Theoremrecgt0 8246 The reciprocal of a positive number is positive. Exercise 4 of [Apostol] p. 21. (Contributed by NM, 25-Aug-1999.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 < (1 / 𝐴))
 
Theoremprodgt0gt0 8247 Infer that a multiplicand is positive from a positive multiplier and positive product. See prodgt0 8248 for the same theorem with 0 < 𝐴 replaced by the weaker condition 0 ≤ 𝐴. (Contributed by Jim Kingdon, 29-Feb-2020.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
 
Theoremprodgt0 8248 Infer that a multiplicand is positive from a nonnegative multiplier and positive product. (Contributed by NM, 24-Apr-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐵)
 
Theoremprodgt02 8249 Infer that a multiplier is positive from a nonnegative multiplicand and positive product. (Contributed by NM, 24-Apr-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐵 ∧ 0 < (𝐴 · 𝐵))) → 0 < 𝐴)
 
Theoremprodge0 8250 Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵)
 
Theoremprodge02 8251 Infer that a multiplier is nonnegative from a positive multiplicand and nonnegative product. (Contributed by NM, 2-Jul-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐵 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐴)
 
Theoremltmul2 8252 Multiplication of both sides of 'less than' by a positive number. Theorem I.19 of [Apostol] p. 20. (Contributed by NM, 13-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 · 𝐴) < (𝐶 · 𝐵)))
 
Theoremlemul2 8253 Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 · 𝐴) ≤ (𝐶 · 𝐵)))
 
Theoremlemul1a 8254 Multiplication of both sides of 'less than or equal to' by a nonnegative number. Part of Definition 11.2.7(vi) of [HoTT], p. (varies). (Contributed by NM, 21-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐶))
 
Theoremlemul2a 8255 Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 · 𝐴) ≤ (𝐶 · 𝐵))
 
Theoremltmul12a 8256 Comparison of product of two positive numbers. (Contributed by NM, 30-Dec-2005.)
((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 ≤ 𝐶𝐶 < 𝐷))) → (𝐴 · 𝐶) < (𝐵 · 𝐷))
 
Theoremlemul12b 8257 Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 ≤ 𝐷))) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
 
Theoremlemul12a 8258 Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
((((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ) ∧ ((𝐶 ∈ ℝ ∧ 0 ≤ 𝐶) ∧ 𝐷 ∈ ℝ)) → ((𝐴𝐵𝐶𝐷) → (𝐴 · 𝐶) ≤ (𝐵 · 𝐷)))
 
Theoremmulgt1 8259 The product of two numbers greater than 1 is greater than 1. (Contributed by NM, 13-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (1 < 𝐴 ∧ 1 < 𝐵)) → 1 < (𝐴 · 𝐵))
 
Theoremltmulgt11 8260 Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐴 · 𝐵)))
 
Theoremltmulgt12 8261 Multiplication by a number greater than 1. (Contributed by NM, 24-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐵𝐴 < (𝐵 · 𝐴)))
 
Theoremlemulge11 8262 Multiplication by a number greater than or equal to 1. (Contributed by NM, 17-Dec-2005.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐴 · 𝐵))
 
Theoremlemulge12 8263 Multiplication by a number greater than or equal to 1. (Contributed by Paul Chapman, 21-Mar-2011.)
(((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 1 ≤ 𝐵)) → 𝐴 ≤ (𝐵 · 𝐴))
 
Theoremltdiv1 8264 Division of both sides of 'less than' by a positive number. (Contributed by NM, 10-Oct-2004.) (Revised by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐴 / 𝐶) < (𝐵 / 𝐶)))
 
Theoremlediv1 8265 Division of both sides of a less than or equal to relation by a positive number. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐴 / 𝐶) ≤ (𝐵 / 𝐶)))
 
Theoremgt0div 8266 Division of a positive number by a positive number. (Contributed by NM, 28-Sep-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 < 𝐴 ↔ 0 < (𝐴 / 𝐵)))
 
Theoremge0div 8267 Division of a nonnegative number by a positive number. (Contributed by NM, 28-Sep-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 0 < 𝐵) → (0 ≤ 𝐴 ↔ 0 ≤ (𝐴 / 𝐵)))
 
Theoremdivgt0 8268 The ratio of two positive numbers is positive. (Contributed by NM, 12-Oct-1999.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 < (𝐴 / 𝐵))
 
Theoremdivge0 8269 The ratio of nonnegative and positive numbers is nonnegative. (Contributed by NM, 27-Sep-1999.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ (𝐴 / 𝐵))
 
Theoremltmuldiv 8270 'Less than' relationship between division and multiplication. (Contributed by NM, 12-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremltmuldiv2 8271 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐴) < 𝐵𝐴 < (𝐵 / 𝐶)))
 
Theoremltdivmul 8272 'Less than' relationship between division and multiplication. (Contributed by NM, 18-Nov-2004.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐶 · 𝐵)))
 
Theoremledivmul 8273 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐶 · 𝐵)))
 
Theoremltdivmul2 8274 'Less than' relationship between division and multiplication. (Contributed by NM, 24-Feb-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) < 𝐵𝐴 < (𝐵 · 𝐶)))
 
Theoremlt2mul2div 8275 'Less than' relationship between division and multiplication. (Contributed by NM, 8-Jan-2006.)
(((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ (𝐶 ∈ ℝ ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 · 𝐵) < (𝐶 · 𝐷) ↔ (𝐴 / 𝐷) < (𝐶 / 𝐵)))
 
Theoremledivmul2 8276 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 · 𝐶)))
 
Theoremlemuldiv 8277 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 · 𝐶) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
 
Theoremlemuldiv2 8278 'Less than or equal' relationship between division and multiplication. (Contributed by NM, 10-Mar-2006.)
((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 · 𝐴) ≤ 𝐵𝐴 ≤ (𝐵 / 𝐶)))
 
Theoremltrec 8279 The reciprocal of both sides of 'less than'. (Contributed by NM, 26-Sep-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
 
Theoremlerec 8280 The reciprocal of both sides of 'less than or equal to'. (Contributed by NM, 3-Oct-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴𝐵 ↔ (1 / 𝐵) ≤ (1 / 𝐴)))
 
Theoremlt2msq1 8281 Lemma for lt2msq 8282. (Contributed by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 · 𝐴) < (𝐵 · 𝐵))
 
Theoremlt2msq 8282 Two nonnegative numbers compare the same as their squares. (Contributed by Roy F. Longton, 8-Aug-2005.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴 < 𝐵 ↔ (𝐴 · 𝐴) < (𝐵 · 𝐵)))
 
Theoremltdiv2 8283 Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
 
Theoremltrec1 8284 Reciprocal swap in a 'less than' relation. (Contributed by NM, 24-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((1 / 𝐴) < 𝐵 ↔ (1 / 𝐵) < 𝐴))
 
Theoremlerec2 8285 Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 ≤ (1 / 𝐵) ↔ 𝐵 ≤ (1 / 𝐴)))
 
Theoremledivdiv 8286 Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006.)
((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐷 ∈ ℝ ∧ 0 < 𝐷))) → ((𝐴 / 𝐵) ≤ (𝐶 / 𝐷) ↔ (𝐷 / 𝐶) ≤ (𝐵 / 𝐴)))
 
Theoremlediv2 8287 Division of a positive number by both sides of 'less than or equal to'. (Contributed by NM, 10-Jan-2006.)
(((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴𝐵 ↔ (𝐶 / 𝐵) ≤ (𝐶 / 𝐴)))
 
Theoremltdiv23 8288 Swap denominator with other side of 'less than'. (Contributed by NM, 3-Oct-1999.)
((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) < 𝐶 ↔ (𝐴 / 𝐶) < 𝐵))
 
Theoremlediv23 8289 Swap denominator with other side of 'less than or equal to'. (Contributed by NM, 30-May-2005.)
((𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐴 / 𝐵) ≤ 𝐶 ↔ (𝐴 / 𝐶) ≤ 𝐵))
 
Theoremlediv12a 8290 Comparison of ratio of two nonnegative numbers. (Contributed by NM, 31-Dec-2005.)
((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴𝐴𝐵)) ∧ ((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (0 < 𝐶𝐶𝐷))) → (𝐴 / 𝐷) ≤ (𝐵 / 𝐶))
 
Theoremlediv2a 8291 Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Paul Chapman, 7-Sep-2007.)
((((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) ∧ 𝐴𝐵) → (𝐶 / 𝐵) ≤ (𝐶 / 𝐴))
 
Theoremreclt1 8292 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by NM, 23-Feb-2005.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 < 1 ↔ 1 < (1 / 𝐴)))
 
Theoremrecgt1 8293 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by NM, 28-Dec-2005.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 < 𝐴 ↔ (1 / 𝐴) < 1))
 
Theoremrecgt1i 8294 The reciprocal of a number greater than 1 is positive and less than 1. (Contributed by NM, 23-Feb-2005.)
((𝐴 ∈ ℝ ∧ 1 < 𝐴) → (0 < (1 / 𝐴) ∧ (1 / 𝐴) < 1))
 
Theoremrecp1lt1 8295 Construct a number less than 1 from any nonnegative number. (Contributed by NM, 30-Dec-2005.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → (𝐴 / (1 + 𝐴)) < 1)
 
Theoremrecreclt 8296 Given a positive number 𝐴, construct a new positive number less than both 𝐴 and 1. (Contributed by NM, 28-Dec-2005.)
((𝐴 ∈ ℝ ∧ 0 < 𝐴) → ((1 / (1 + (1 / 𝐴))) < 1 ∧ (1 / (1 + (1 / 𝐴))) < 𝐴))
 
Theoremle2msq 8297 The square function on nonnegative reals is monotonic. (Contributed by NM, 3-Aug-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → (𝐴𝐵 ↔ (𝐴 · 𝐴) ≤ (𝐵 · 𝐵)))
 
Theoremmsq11 8298 The square of a nonnegative number is a one-to-one function. (Contributed by NM, 29-Jul-1999.) (Revised by Mario Carneiro, 27-May-2016.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 · 𝐴) = (𝐵 · 𝐵) ↔ 𝐴 = 𝐵))
 
Theoremledivp1 8299 Less-than-or-equal-to and division relation. (Lemma for computing upper bounds of products. The "+ 1" prevents division by zero.) (Contributed by NM, 28-Sep-2005.)
(((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 / (𝐵 + 1)) · 𝐵) ≤ 𝐴)
 
Theoremsqueeze0 8300* If a nonnegative number is less than any positive number, it is zero. (Contributed by NM, 11-Feb-2006.)
((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ∧ ∀𝑥 ∈ ℝ (0 < 𝑥𝐴 < 𝑥)) → 𝐴 = 0)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11363
  Copyright terms: Public domain < Previous  Next >