ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  swrdccat3blem GIF version

Theorem swrdccat3blem 11266
Description: Lemma for swrdccat3b 11267. (Contributed by AV, 30-May-2018.)
Hypothesis
Ref Expression
swrdccatin2.l 𝐿 = (♯‘𝐴)
Assertion
Ref Expression
swrdccat3blem ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))

Proof of Theorem swrdccat3blem
StepHypRef Expression
1 lencl 11070 . . . . . . . 8 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℕ0)
2 nn0le0eq0 9393 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ0 → ((♯‘𝐵) ≤ 0 ↔ (♯‘𝐵) = 0))
32biimpd 144 . . . . . . . 8 ((♯‘𝐵) ∈ ℕ0 → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
41, 3syl 14 . . . . . . 7 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
54adantl 277 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) ≤ 0 → (♯‘𝐵) = 0))
6 wrdfin 11085 . . . . . . . . . . . 12 (𝐵 ∈ Word 𝑉𝐵 ∈ Fin)
7 fihasheq0 11010 . . . . . . . . . . . 12 (𝐵 ∈ Fin → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
86, 7syl 14 . . . . . . . . . . 11 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) = 0 ↔ 𝐵 = ∅))
98biimpd 144 . . . . . . . . . 10 (𝐵 ∈ Word 𝑉 → ((♯‘𝐵) = 0 → 𝐵 = ∅))
109adantl 277 . . . . . . . . 9 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) = 0 → 𝐵 = ∅))
1110imp 124 . . . . . . . 8 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) → 𝐵 = ∅)
12 lencl 11070 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → (♯‘𝐴) ∈ ℕ0)
13 swrdccatin2.l . . . . . . . . . . . . . . . . . . 19 𝐿 = (♯‘𝐴)
1413eqcomi 2233 . . . . . . . . . . . . . . . . . 18 (♯‘𝐴) = 𝐿
1514eleq1i 2295 . . . . . . . . . . . . . . . . 17 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℕ0)
16 nn0re 9374 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0𝐿 ∈ ℝ)
17 elfz2nn0 10304 . . . . . . . . . . . . . . . . . . 19 (𝑀 ∈ (0...(𝐿 + 0)) ↔ (𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)))
18 recn 8128 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝐿 ∈ ℝ → 𝐿 ∈ ℂ)
1918addridd 8291 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (𝐿 + 0) = 𝐿)
2019breq2d 4094 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℝ → (𝑀 ≤ (𝐿 + 0) ↔ 𝑀𝐿))
21 nn0re 9374 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑀 ∈ ℕ0𝑀 ∈ ℝ)
2221anim1i 340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑀 ∈ ℕ0𝐿 ∈ ℝ) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
2322ancoms 268 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ))
24 letri3 8223 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑀 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑀 = 𝐿 ↔ (𝑀𝐿𝐿𝑀)))
2523, 24syl 14 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → (𝑀 = 𝐿 ↔ (𝑀𝐿𝐿𝑀)))
2625biimprd 158 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝐿 ∈ ℝ ∧ 𝑀 ∈ ℕ0) → ((𝑀𝐿𝐿𝑀) → 𝑀 = 𝐿))
2726exp4b 367 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝐿 ∈ ℝ → (𝑀 ∈ ℕ0 → (𝑀𝐿 → (𝐿𝑀𝑀 = 𝐿))))
2827com23 78 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐿 ∈ ℝ → (𝑀𝐿 → (𝑀 ∈ ℕ0 → (𝐿𝑀𝑀 = 𝐿))))
2920, 28sylbid 150 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐿 ∈ ℝ → (𝑀 ≤ (𝐿 + 0) → (𝑀 ∈ ℕ0 → (𝐿𝑀𝑀 = 𝐿))))
3029com3l 81 . . . . . . . . . . . . . . . . . . . . . 22 (𝑀 ≤ (𝐿 + 0) → (𝑀 ∈ ℕ0 → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿))))
3130impcom 125 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿)))
32313adant2 1040 . . . . . . . . . . . . . . . . . . . 20 ((𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿 ∈ ℝ → (𝐿𝑀𝑀 = 𝐿)))
3332com12 30 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℝ → ((𝑀 ∈ ℕ0 ∧ (𝐿 + 0) ∈ ℕ0𝑀 ≤ (𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3417, 33biimtrid 152 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℝ → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3516, 34syl 14 . . . . . . . . . . . . . . . . 17 (𝐿 ∈ ℕ0 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3615, 35sylbi 121 . . . . . . . . . . . . . . . 16 ((♯‘𝐴) ∈ ℕ0 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3712, 36syl 14 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (𝑀 ∈ (0...(𝐿 + 0)) → (𝐿𝑀𝑀 = 𝐿)))
3837imp 124 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝐿𝑀𝑀 = 𝐿))
39 0ex 4210 . . . . . . . . . . . . . . . . . . 19 ∅ ∈ V
40 0z 9453 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℤ
41 swrd00g 11176 . . . . . . . . . . . . . . . . . . 19 ((∅ ∈ V ∧ 0 ∈ ℤ) → (∅ substr ⟨0, 0⟩) = ∅)
4239, 40, 41mp2an 426 . . . . . . . . . . . . . . . . . 18 (∅ substr ⟨0, 0⟩) = ∅
4313, 12eqeltrid 2316 . . . . . . . . . . . . . . . . . . . 20 (𝐴 ∈ Word 𝑉𝐿 ∈ ℕ0)
4443nn0zd 9563 . . . . . . . . . . . . . . . . . . 19 (𝐴 ∈ Word 𝑉𝐿 ∈ ℤ)
45 swrd00g 11176 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ Word 𝑉𝐿 ∈ ℤ) → (𝐴 substr ⟨𝐿, 𝐿⟩) = ∅)
4644, 45mpdan 421 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝐿, 𝐿⟩) = ∅)
4742, 46eqtr4id 2281 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑉 → (∅ substr ⟨0, 0⟩) = (𝐴 substr ⟨𝐿, 𝐿⟩))
48 nn0cn 9375 . . . . . . . . . . . . . . . . . . . . 21 (𝐿 ∈ ℕ0𝐿 ∈ ℂ)
4948subidd 8441 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0 → (𝐿𝐿) = 0)
5049opeq1d 3862 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0 → ⟨(𝐿𝐿), 0⟩ = ⟨0, 0⟩)
5150oveq2d 6016 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (∅ substr ⟨0, 0⟩))
5243, 51syl 14 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑉 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (∅ substr ⟨0, 0⟩))
5348addridd 8291 . . . . . . . . . . . . . . . . . . . 20 (𝐿 ∈ ℕ0 → (𝐿 + 0) = 𝐿)
5453opeq2d 3863 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℕ0 → ⟨𝐿, (𝐿 + 0)⟩ = ⟨𝐿, 𝐿⟩)
5554oveq2d 6016 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℕ0 → (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩) = (𝐴 substr ⟨𝐿, 𝐿⟩))
5643, 55syl 14 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩) = (𝐴 substr ⟨𝐿, 𝐿⟩))
5747, 52, 563eqtr4d 2272 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → (∅ substr ⟨(𝐿𝐿), 0⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩))
58 oveq1 6007 . . . . . . . . . . . . . . . . . . 19 (𝑀 = 𝐿 → (𝑀𝐿) = (𝐿𝐿))
5958opeq1d 3862 . . . . . . . . . . . . . . . . . 18 (𝑀 = 𝐿 → ⟨(𝑀𝐿), 0⟩ = ⟨(𝐿𝐿), 0⟩)
6059oveq2d 6016 . . . . . . . . . . . . . . . . 17 (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (∅ substr ⟨(𝐿𝐿), 0⟩))
61 opeq1 3856 . . . . . . . . . . . . . . . . . 18 (𝑀 = 𝐿 → ⟨𝑀, (𝐿 + 0)⟩ = ⟨𝐿, (𝐿 + 0)⟩)
6261oveq2d 6016 . . . . . . . . . . . . . . . . 17 (𝑀 = 𝐿 → (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩))
6360, 62eqeq12d 2244 . . . . . . . . . . . . . . . 16 (𝑀 = 𝐿 → ((∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩) ↔ (∅ substr ⟨(𝐿𝐿), 0⟩) = (𝐴 substr ⟨𝐿, (𝐿 + 0)⟩)))
6457, 63syl5ibrcom 157 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
6564adantr 276 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝑀 = 𝐿 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
6638, 65syld 45 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝐿𝑀 → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
6766imp 124 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) ∧ 𝐿𝑀) → (∅ substr ⟨(𝑀𝐿), 0⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
68 simpl 109 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → 𝐴 ∈ Word 𝑉)
69 elfzelz 10217 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (0...(𝐿 + 0)) → 𝑀 ∈ ℤ)
7069adantl 277 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → 𝑀 ∈ ℤ)
7144adantr 276 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → 𝐿 ∈ ℤ)
72 swrdclg 11177 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ Word 𝑉𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉)
7368, 70, 71, 72syl3anc 1271 . . . . . . . . . . . . . . 15 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉)
74 ccatrid 11137 . . . . . . . . . . . . . . 15 ((𝐴 substr ⟨𝑀, 𝐿⟩) ∈ Word 𝑉 → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝐿⟩))
7573, 74syl 14 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, 𝐿⟩))
7615, 48sylbi 121 . . . . . . . . . . . . . . . . . . 19 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℂ)
7712, 76syl 14 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ Word 𝑉𝐿 ∈ ℂ)
78 addrid 8280 . . . . . . . . . . . . . . . . . . 19 (𝐿 ∈ ℂ → (𝐿 + 0) = 𝐿)
7978eqcomd 2235 . . . . . . . . . . . . . . . . . 18 (𝐿 ∈ ℂ → 𝐿 = (𝐿 + 0))
8077, 79syl 14 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ Word 𝑉𝐿 = (𝐿 + 0))
8180opeq2d 3863 . . . . . . . . . . . . . . . 16 (𝐴 ∈ Word 𝑉 → ⟨𝑀, 𝐿⟩ = ⟨𝑀, (𝐿 + 0)⟩)
8281oveq2d 6016 . . . . . . . . . . . . . . 15 (𝐴 ∈ Word 𝑉 → (𝐴 substr ⟨𝑀, 𝐿⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
8382adantr 276 . . . . . . . . . . . . . 14 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → (𝐴 substr ⟨𝑀, 𝐿⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
8475, 83eqtrd 2262 . . . . . . . . . . . . 13 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
8584adantr 276 . . . . . . . . . . . 12 (((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) ∧ ¬ 𝐿𝑀) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
86 zdcle 9519 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑀 ∈ ℤ) → DECID 𝐿𝑀)
8744, 69, 86syl2an 289 . . . . . . . . . . . 12 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → DECID 𝐿𝑀)
8867, 85, 87ifeqdadc 3635 . . . . . . . . . . 11 ((𝐴 ∈ Word 𝑉𝑀 ∈ (0...(𝐿 + 0))) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
8988ex 115 . . . . . . . . . 10 (𝐴 ∈ Word 𝑉 → (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
9089ad3antrrr 492 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
91 oveq2 6008 . . . . . . . . . . . . . 14 ((♯‘𝐵) = 0 → (𝐿 + (♯‘𝐵)) = (𝐿 + 0))
9291oveq2d 6016 . . . . . . . . . . . . 13 ((♯‘𝐵) = 0 → (0...(𝐿 + (♯‘𝐵))) = (0...(𝐿 + 0)))
9392eleq2d 2299 . . . . . . . . . . . 12 ((♯‘𝐵) = 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ 𝑀 ∈ (0...(𝐿 + 0))))
9493adantr 276 . . . . . . . . . . 11 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) ↔ 𝑀 ∈ (0...(𝐿 + 0))))
95 simpr 110 . . . . . . . . . . . . . 14 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → 𝐵 = ∅)
96 opeq2 3857 . . . . . . . . . . . . . . 15 ((♯‘𝐵) = 0 → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), 0⟩)
9796adantr 276 . . . . . . . . . . . . . 14 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ⟨(𝑀𝐿), (♯‘𝐵)⟩ = ⟨(𝑀𝐿), 0⟩)
9895, 97oveq12d 6018 . . . . . . . . . . . . 13 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩) = (∅ substr ⟨(𝑀𝐿), 0⟩))
99 oveq2 6008 . . . . . . . . . . . . . 14 (𝐵 = ∅ → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅))
10099adantl 277 . . . . . . . . . . . . 13 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵) = ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅))
10198, 100ifeq12d 3622 . . . . . . . . . . . 12 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)))
10291opeq2d 3863 . . . . . . . . . . . . . 14 ((♯‘𝐵) = 0 → ⟨𝑀, (𝐿 + (♯‘𝐵))⟩ = ⟨𝑀, (𝐿 + 0)⟩)
103102oveq2d 6016 . . . . . . . . . . . . 13 ((♯‘𝐵) = 0 → (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
104103adantr 276 . . . . . . . . . . . 12 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))
105101, 104eqeq12d 2244 . . . . . . . . . . 11 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → (if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩) ↔ if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩)))
10694, 105imbi12d 234 . . . . . . . . . 10 (((♯‘𝐵) = 0 ∧ 𝐵 = ∅) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)) ↔ (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
107106adantll 476 . . . . . . . . 9 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → ((𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)) ↔ (𝑀 ∈ (0...(𝐿 + 0)) → if(𝐿𝑀, (∅ substr ⟨(𝑀𝐿), 0⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ ∅)) = (𝐴 substr ⟨𝑀, (𝐿 + 0)⟩))))
10890, 107mpbird 167 . . . . . . . 8 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) ∧ 𝐵 = ∅) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
10911, 108mpdan 421 . . . . . . 7 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ (♯‘𝐵) = 0) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
110109ex 115 . . . . . 6 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) = 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
1115, 110syld 45 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((♯‘𝐵) ≤ 0 → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
112111com23 78 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → (𝑀 ∈ (0...(𝐿 + (♯‘𝐵))) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
113112imp 124 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
114113adantr 276 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → ((♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
11513eleq1i 2295 . . . . . . . 8 (𝐿 ∈ ℕ0 ↔ (♯‘𝐴) ∈ ℕ0)
116115, 16sylbir 135 . . . . . . 7 ((♯‘𝐴) ∈ ℕ0𝐿 ∈ ℝ)
11712, 116syl 14 . . . . . 6 (𝐴 ∈ Word 𝑉𝐿 ∈ ℝ)
1181nn0red 9419 . . . . . 6 (𝐵 ∈ Word 𝑉 → (♯‘𝐵) ∈ ℝ)
119 leaddle0 8620 . . . . . 6 ((𝐿 ∈ ℝ ∧ (♯‘𝐵) ∈ ℝ) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 ↔ (♯‘𝐵) ≤ 0))
120117, 118, 119syl2an 289 . . . . 5 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 ↔ (♯‘𝐵) ≤ 0))
121 pm2.24 624 . . . . 5 ((♯‘𝐵) ≤ 0 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
122120, 121biimtrdi 163 . . . 4 ((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
123122adantr 276 . . 3 (((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) → ((𝐿 + (♯‘𝐵)) ≤ 𝐿 → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))))
124123imp 124 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → (¬ (♯‘𝐵) ≤ 0 → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩)))
1251ad3antlr 493 . . . . 5 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → (♯‘𝐵) ∈ ℕ0)
126125nn0zd 9563 . . . 4 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → (♯‘𝐵) ∈ ℤ)
127 zdcle 9519 . . . 4 (((♯‘𝐵) ∈ ℤ ∧ 0 ∈ ℤ) → DECID (♯‘𝐵) ≤ 0)
128126, 40, 127sylancl 413 . . 3 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → DECID (♯‘𝐵) ≤ 0)
129 exmiddc 841 . . 3 (DECID (♯‘𝐵) ≤ 0 → ((♯‘𝐵) ≤ 0 ∨ ¬ (♯‘𝐵) ≤ 0))
130128, 129syl 14 . 2 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → ((♯‘𝐵) ≤ 0 ∨ ¬ (♯‘𝐵) ≤ 0))
131114, 124, 130mpjaod 723 1 ((((𝐴 ∈ Word 𝑉𝐵 ∈ Word 𝑉) ∧ 𝑀 ∈ (0...(𝐿 + (♯‘𝐵)))) ∧ (𝐿 + (♯‘𝐵)) ≤ 𝐿) → if(𝐿𝑀, (𝐵 substr ⟨(𝑀𝐿), (♯‘𝐵)⟩), ((𝐴 substr ⟨𝑀, 𝐿⟩) ++ 𝐵)) = (𝐴 substr ⟨𝑀, (𝐿 + (♯‘𝐵))⟩))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 713  DECID wdc 839  w3a 1002   = wceq 1395  wcel 2200  Vcvv 2799  c0 3491  ifcif 3602  cop 3669   class class class wbr 4082  cfv 5317  (class class class)co 6000  Fincfn 6885  cc 7993  cr 7994  0cc0 7995   + caddc 7998  cle 8178  cmin 8313  0cn0 9365  cz 9442  ...cfz 10200  chash 10992  Word cword 11066   ++ cconcat 11120   substr csubstr 11172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-1o 6560  df-er 6678  df-en 6886  df-dom 6887  df-fin 6888  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-ihash 10993  df-word 11067  df-concat 11121  df-substr 11173
This theorem is referenced by:  swrdccat3b  11267
  Copyright terms: Public domain W3C validator