| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridi | GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addridi | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addrid 8292 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-0id 8115 |
| This theorem is referenced by: 1p0e1 9234 9p1e10 9588 num0u 9596 numnncl2 9608 decrmanc 9642 decaddi 9645 decaddci 9646 decmul1 9649 decmulnc 9652 fsumrelem 11990 demoivreALT 12293 decsplit0 12958 sinhalfpilem 15473 efipi 15483 |
| Copyright terms: Public domain | W3C validator |