ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addridi GIF version

Theorem addridi 8256
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addridi (𝐴 + 0) = 𝐴

Proof of Theorem addridi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addrid 8252 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1375  wcel 2180  (class class class)co 5974  cc 7965  0cc0 7967   + caddc 7970
This theorem was proved from axioms:  ax-mp 5  ax-0id 8075
This theorem is referenced by:  1p0e1  9194  9p1e10  9548  num0u  9556  numnncl2  9568  decrmanc  9602  decaddi  9605  decaddci  9606  decmul1  9609  decmulnc  9612  fsumrelem  11948  demoivreALT  12251  decsplit0  12916  sinhalfpilem  15430  efipi  15440
  Copyright terms: Public domain W3C validator