ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addridi GIF version

Theorem addridi 8221
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addridi (𝐴 + 0) = 𝐴

Proof of Theorem addridi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addrid 8217 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2177  (class class class)co 5951  cc 7930  0cc0 7932   + caddc 7935
This theorem was proved from axioms:  ax-mp 5  ax-0id 8040
This theorem is referenced by:  1p0e1  9159  9p1e10  9513  num0u  9521  numnncl2  9533  decrmanc  9567  decaddi  9570  decaddci  9571  decmul1  9574  decmulnc  9577  fsumrelem  11826  demoivreALT  12129  decsplit0  12794  sinhalfpilem  15307  efipi  15317
  Copyright terms: Public domain W3C validator