| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridi | GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addridi | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addrid 8162 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5922 ℂcc 7875 0cc0 7877 + caddc 7880 |
| This theorem was proved from axioms: ax-mp 5 ax-0id 7985 |
| This theorem is referenced by: 1p0e1 9103 9p1e10 9456 num0u 9464 numnncl2 9476 decrmanc 9510 decaddi 9513 decaddci 9514 decmul1 9517 decmulnc 9520 fsumrelem 11620 demoivreALT 11923 decsplit0 12572 sinhalfpilem 15002 efipi 15012 |
| Copyright terms: Public domain | W3C validator |