| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridi | GIF version | ||
| Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.) |
| Ref | Expression |
|---|---|
| mul.1 | ⊢ 𝐴 ∈ ℂ |
| Ref | Expression |
|---|---|
| addridi | ⊢ (𝐴 + 0) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mul.1 | . 2 ⊢ 𝐴 ∈ ℂ | |
| 2 | addrid 8181 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 + 0) = 𝐴 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7894 0cc0 7896 + caddc 7899 |
| This theorem was proved from axioms: ax-mp 5 ax-0id 8004 |
| This theorem is referenced by: 1p0e1 9123 9p1e10 9476 num0u 9484 numnncl2 9496 decrmanc 9530 decaddi 9533 decaddci 9534 decmul1 9537 decmulnc 9540 fsumrelem 11653 demoivreALT 11956 decsplit0 12621 sinhalfpilem 15111 efipi 15121 |
| Copyright terms: Public domain | W3C validator |