ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addridi GIF version

Theorem addridi 8166
Description: 0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1 𝐴 ∈ ℂ
Assertion
Ref Expression
addridi (𝐴 + 0) = 𝐴

Proof of Theorem addridi
StepHypRef Expression
1 mul.1 . 2 𝐴 ∈ ℂ
2 addrid 8162 . 2 (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴)
31, 2ax-mp 5 1 (𝐴 + 0) = 𝐴
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  (class class class)co 5922  cc 7875  0cc0 7877   + caddc 7880
This theorem was proved from axioms:  ax-mp 5  ax-0id 7985
This theorem is referenced by:  1p0e1  9103  9p1e10  9456  num0u  9464  numnncl2  9476  decrmanc  9510  decaddi  9513  decaddci  9514  decmul1  9517  decmulnc  9520  fsumrelem  11620  demoivreALT  11923  decsplit0  12572  sinhalfpilem  15002  efipi  15012
  Copyright terms: Public domain W3C validator