| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridd | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addridd | ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addrid 8292 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 (class class class)co 6007 ℂcc 8005 0cc0 8007 + caddc 8010 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 8115 |
| This theorem is referenced by: subsub2 8382 negsub 8402 ltaddneg 8579 ltaddpos 8607 addge01 8627 add20 8629 apreap 8742 nnge1 9141 nnnn0addcl 9407 un0addcl 9410 peano2z 9490 zaddcl 9494 uzaddcl 9789 xaddid1 10066 fzosubel3 10410 expadd 10811 faclbnd6 10974 omgadd 11032 ccatrid 11150 pfxmpt 11220 pfxfv 11224 pfxswrd 11246 pfxccatin12lem1 11268 pfxccatin12lem2 11271 swrdccat3blem 11279 reim0b 11381 rereb 11382 immul2 11399 resqrexlemcalc3 11535 resqrexlemnm 11537 max0addsup 11738 fsumsplit 11926 sumsplitdc 11951 bitsinv1lem 12480 bezoutlema 12528 pcadd 12871 pcadd2 12872 pcmpt 12874 mulgnn0dir 13697 cosmpi 15498 sinppi 15499 sinhalfpip 15502 trilpolemlt1 16439 |
| Copyright terms: Public domain | W3C validator |