| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridd | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addridd | ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addrid 8217 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 ∈ wcel 2177 (class class class)co 5951 ℂcc 7930 0cc0 7932 + caddc 7935 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 8040 |
| This theorem is referenced by: subsub2 8307 negsub 8327 ltaddneg 8504 ltaddpos 8532 addge01 8552 add20 8554 apreap 8667 nnge1 9066 nnnn0addcl 9332 un0addcl 9335 peano2z 9415 zaddcl 9419 uzaddcl 9714 xaddid1 9991 fzosubel3 10332 expadd 10733 faclbnd6 10896 omgadd 10954 ccatrid 11071 pfxmpt 11139 pfxfv 11143 pfxswrd 11165 reim0b 11217 rereb 11218 immul2 11235 resqrexlemcalc3 11371 resqrexlemnm 11373 max0addsup 11574 fsumsplit 11762 sumsplitdc 11787 bitsinv1lem 12316 bezoutlema 12364 pcadd 12707 pcadd2 12708 pcmpt 12710 mulgnn0dir 13532 cosmpi 15332 sinppi 15333 sinhalfpip 15336 trilpolemlt1 16054 |
| Copyright terms: Public domain | W3C validator |