| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridd | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addridd | ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addrid 8252 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 (class class class)co 5974 ℂcc 7965 0cc0 7967 + caddc 7970 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 8075 |
| This theorem is referenced by: subsub2 8342 negsub 8362 ltaddneg 8539 ltaddpos 8567 addge01 8587 add20 8589 apreap 8702 nnge1 9101 nnnn0addcl 9367 un0addcl 9370 peano2z 9450 zaddcl 9454 uzaddcl 9749 xaddid1 10026 fzosubel3 10369 expadd 10770 faclbnd6 10933 omgadd 10991 ccatrid 11108 pfxmpt 11178 pfxfv 11182 pfxswrd 11204 pfxccatin12lem1 11226 pfxccatin12lem2 11229 swrdccat3blem 11237 reim0b 11339 rereb 11340 immul2 11357 resqrexlemcalc3 11493 resqrexlemnm 11495 max0addsup 11696 fsumsplit 11884 sumsplitdc 11909 bitsinv1lem 12438 bezoutlema 12486 pcadd 12829 pcadd2 12830 pcmpt 12832 mulgnn0dir 13655 cosmpi 15455 sinppi 15456 sinhalfpip 15459 trilpolemlt1 16320 |
| Copyright terms: Public domain | W3C validator |