| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > addridd | GIF version | ||
| Description: 0 is an additive identity. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| muld.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| Ref | Expression |
|---|---|
| addridd | ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addrid 8183 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 + 0) = 𝐴) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 + 0) = 𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 (class class class)co 5925 ℂcc 7896 0cc0 7898 + caddc 7901 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-0id 8006 |
| This theorem is referenced by: subsub2 8273 negsub 8293 ltaddneg 8470 ltaddpos 8498 addge01 8518 add20 8520 apreap 8633 nnge1 9032 nnnn0addcl 9298 un0addcl 9301 peano2z 9381 zaddcl 9385 uzaddcl 9679 xaddid1 9956 fzosubel3 10291 expadd 10692 faclbnd6 10855 omgadd 10913 reim0b 11046 rereb 11047 immul2 11064 resqrexlemcalc3 11200 resqrexlemnm 11202 max0addsup 11403 fsumsplit 11591 sumsplitdc 11616 bitsinv1lem 12145 bezoutlema 12193 pcadd 12536 pcadd2 12537 pcmpt 12539 mulgnn0dir 13360 cosmpi 15138 sinppi 15139 sinhalfpip 15142 trilpolemlt1 15776 |
| Copyright terms: Public domain | W3C validator |