ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard2 GIF version

Theorem findcard2 6985
Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.)
Hypotheses
Ref Expression
findcard2.1 (𝑥 = ∅ → (𝜑𝜓))
findcard2.2 (𝑥 = 𝑦 → (𝜑𝜒))
findcard2.3 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
findcard2.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard2.5 𝜓
findcard2.6 (𝑦 ∈ Fin → (𝜒𝜃))
Assertion
Ref Expression
findcard2 (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard2.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 6851 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 4047 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 231 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 1846 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 4047 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 231 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 1846 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 4047 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 231 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 1846 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 6886 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard2.5 . . . . . . . . 9 𝜓
14 findcard2.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 168 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 121 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1471 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 peano3 4643 . . . . . . . . . . . . 13 (𝑣 ∈ ω → suc 𝑣 ≠ ∅)
1918adantr 276 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 ≠ ∅)
20 breq1 4046 . . . . . . . . . . . . . . . 16 (𝑤 = ∅ → (𝑤 ≈ suc 𝑣 ↔ ∅ ≈ suc 𝑣))
2120anbi2d 464 . . . . . . . . . . . . . . 15 (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ↔ (𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣)))
22 peano1 4641 . . . . . . . . . . . . . . . . . 18 ∅ ∈ ω
23 peano2 4642 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
24 nneneq 6953 . . . . . . . . . . . . . . . . . 18 ((∅ ∈ ω ∧ suc 𝑣 ∈ ω) → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣))
2522, 23, 24sylancr 414 . . . . . . . . . . . . . . . . 17 (𝑣 ∈ ω → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣))
2625biimpa 296 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣) → ∅ = suc 𝑣)
2726eqcomd 2210 . . . . . . . . . . . . . . 15 ((𝑣 ∈ ω ∧ ∅ ≈ suc 𝑣) → suc 𝑣 = ∅)
2821, 27biimtrdi 163 . . . . . . . . . . . . . 14 (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 = ∅))
2928com12 30 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 = ∅ → suc 𝑣 = ∅))
3029necon3d 2419 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (suc 𝑣 ≠ ∅ → 𝑤 ≠ ∅))
3119, 30mpd 13 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → 𝑤 ≠ ∅)
3231ex 115 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣𝑤 ≠ ∅))
33 nnfi 6968 . . . . . . . . . . . . . . . 16 (suc 𝑣 ∈ ω → suc 𝑣 ∈ Fin)
3423, 33syl 14 . . . . . . . . . . . . . . 15 (𝑣 ∈ ω → suc 𝑣 ∈ Fin)
3534adantr 276 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 ∈ Fin)
36 enfi 6969 . . . . . . . . . . . . . . 15 (𝑤 ≈ suc 𝑣 → (𝑤 ∈ Fin ↔ suc 𝑣 ∈ Fin))
3736adantl 277 . . . . . . . . . . . . . 14 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ∈ Fin ↔ suc 𝑣 ∈ Fin))
3835, 37mpbird 167 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → 𝑤 ∈ Fin)
39 fin0 6981 . . . . . . . . . . . . 13 (𝑤 ∈ Fin → (𝑤 ≠ ∅ ↔ ∃𝑧 𝑧𝑤))
4038, 39syl 14 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ≠ ∅ ↔ ∃𝑧 𝑧𝑤))
41 simpll 527 . . . . . . . . . . . . . . 15 (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧𝑤) → 𝑣 ∈ ω)
42 dif1en 6975 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣𝑧𝑤) → (𝑤 ∖ {𝑧}) ≈ 𝑣)
43423expa 1205 . . . . . . . . . . . . . . 15 (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧𝑤) → (𝑤 ∖ {𝑧}) ≈ 𝑣)
44 fidifsnid 6967 . . . . . . . . . . . . . . . . 17 ((𝑤 ∈ Fin ∧ 𝑧𝑤) → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤)
4538, 44sylan 283 . . . . . . . . . . . . . . . 16 (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧𝑤) → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤)
46 vex 2774 . . . . . . . . . . . . . . . . . . 19 𝑤 ∈ V
47 difexg 4184 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ V → (𝑤 ∖ {𝑧}) ∈ V)
4846, 47ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑤 ∖ {𝑧}) ∈ V
49 breq1 4046 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦𝑣 ↔ (𝑤 ∖ {𝑧}) ≈ 𝑣))
5049anbi2d 464 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤 ∖ {𝑧}) → ((𝑣 ∈ ω ∧ 𝑦𝑣) ↔ (𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣)))
51 uneq1 3319 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦 ∪ {𝑧}) = ((𝑤 ∖ {𝑧}) ∪ {𝑧}))
5251sbceq1d 3002 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = (𝑤 ∖ {𝑧}) → ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑[((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
5352imbi2d 230 . . . . . . . . . . . . . . . . . . 19 (𝑦 = (𝑤 ∖ {𝑧}) → ((∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)))
5450, 53imbi12d 234 . . . . . . . . . . . . . . . . . 18 (𝑦 = (𝑤 ∖ {𝑧}) → (((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑)) ↔ ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))))
55 breq1 4046 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝑥𝑣𝑦𝑣))
56 findcard2.2 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑦 → (𝜑𝜒))
5755, 56imbi12d 234 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑦 → ((𝑥𝑣𝜑) ↔ (𝑦𝑣𝜒)))
5857spv 1882 . . . . . . . . . . . . . . . . . . . 20 (∀𝑥(𝑥𝑣𝜑) → (𝑦𝑣𝜒))
59 rspe 2554 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ∃𝑣 ∈ ω 𝑦𝑣)
60 isfi 6851 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 ∈ Fin ↔ ∃𝑣 ∈ ω 𝑦𝑣)
6159, 60sylibr 134 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → 𝑦 ∈ Fin)
62 pm2.27 40 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦𝑣 → ((𝑦𝑣𝜒) → 𝜒))
6362adantl 277 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜒))
64 findcard2.6 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ Fin → (𝜒𝜃))
6561, 63, 64sylsyld 58 . . . . . . . . . . . . . . . . . . . 20 ((𝑣 ∈ ω ∧ 𝑦𝑣) → ((𝑦𝑣𝜒) → 𝜃))
6658, 65syl5 32 . . . . . . . . . . . . . . . . . . 19 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → 𝜃))
67 vex 2774 . . . . . . . . . . . . . . . . . . . . 21 𝑦 ∈ V
68 vex 2774 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ V
6968snex 4228 . . . . . . . . . . . . . . . . . . . . 21 {𝑧} ∈ V
7067, 69unex 4487 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∪ {𝑧}) ∈ V
71 findcard2.3 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑𝜃))
7270, 71sbcie 3032 . . . . . . . . . . . . . . . . . . 19 ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑𝜃)
7366, 72imbitrrdi 162 . . . . . . . . . . . . . . . . . 18 ((𝑣 ∈ ω ∧ 𝑦𝑣) → (∀𝑥(𝑥𝑣𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑))
7448, 54, 73vtocl 2826 . . . . . . . . . . . . . . . . 17 ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))
75 dfsbcq 2999 . . . . . . . . . . . . . . . . . 18 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ([((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑[𝑤 / 𝑥]𝜑))
7675imbi2d 230 . . . . . . . . . . . . . . . . 17 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((∀𝑥(𝑥𝑣𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7774, 76imbitrid 154 . . . . . . . . . . . . . . . 16 (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7845, 77syl 14 . . . . . . . . . . . . . . 15 (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧𝑤) → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
7941, 43, 78mp2and 433 . . . . . . . . . . . . . 14 (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧𝑤) → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))
8079ex 115 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧𝑤 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
8180exlimdv 1841 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∃𝑧 𝑧𝑤 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
8240, 81sylbid 150 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ≠ ∅ → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
8382ex 115 . . . . . . . . . 10 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (𝑤 ≠ ∅ → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑))))
8432, 83mpdd 41 . . . . . . . . 9 (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (∀𝑥(𝑥𝑣𝜑) → [𝑤 / 𝑥]𝜑)))
8584com23 78 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
8685alrimdv 1898 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
87 nfv 1550 . . . . . . . 8 𝑤(𝑥 ≈ suc 𝑣𝜑)
88 nfv 1550 . . . . . . . . 9 𝑥 𝑤 ≈ suc 𝑣
89 nfsbc1v 3016 . . . . . . . . 9 𝑥[𝑤 / 𝑥]𝜑
9088, 89nfim 1594 . . . . . . . 8 𝑥(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)
91 breq1 4046 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑥 ≈ suc 𝑣𝑤 ≈ suc 𝑣))
92 sbceq1a 3007 . . . . . . . . 9 (𝑥 = 𝑤 → (𝜑[𝑤 / 𝑥]𝜑))
9391, 92imbi12d 234 . . . . . . . 8 (𝑥 = 𝑤 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑)))
9487, 90, 93cbval 1776 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑤(𝑤 ≈ suc 𝑣[𝑤 / 𝑥]𝜑))
9586, 94imbitrrdi 162 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
965, 8, 11, 17, 95finds1 4649 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
979619.21bi 1580 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
9897rexlimiv 2616 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
992, 98sylbi 121 . 2 (𝑥 ∈ Fin → 𝜑)
1001, 99vtoclga 2838 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wal 1370   = wceq 1372  wex 1514  wcel 2175  wne 2375  wrex 2484  Vcvv 2771  [wsbc 2997  cdif 3162  cun 3163  c0 3459  {csn 3632   class class class wbr 4043  suc csuc 4411  ωcom 4637  cen 6824  Fincfn 6826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-er 6619  df-en 6827  df-fin 6829
This theorem is referenced by:  finomni  7241  rexfiuz  11242  fimaxre2  11480
  Copyright terms: Public domain W3C validator