Step | Hyp | Ref
| Expression |
1 | | findcard2.4 |
. 2
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) |
2 | | isfi 6699 |
. . 3
⊢ (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥 ≈ 𝑤) |
3 | | breq2 3969 |
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅)) |
4 | 3 | imbi1d 230 |
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ ∅ → 𝜑))) |
5 | 4 | albidv 1804 |
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑))) |
6 | | breq2 3969 |
. . . . . . . 8
⊢ (𝑤 = 𝑣 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑣)) |
7 | 6 | imbi1d 230 |
. . . . . . 7
⊢ (𝑤 = 𝑣 → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ 𝑣 → 𝜑))) |
8 | 7 | albidv 1804 |
. . . . . 6
⊢ (𝑤 = 𝑣 → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ 𝑣 → 𝜑))) |
9 | | breq2 3969 |
. . . . . . . 8
⊢ (𝑤 = suc 𝑣 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑣)) |
10 | 9 | imbi1d 230 |
. . . . . . 7
⊢ (𝑤 = suc 𝑣 → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ suc 𝑣 → 𝜑))) |
11 | 10 | albidv 1804 |
. . . . . 6
⊢ (𝑤 = suc 𝑣 → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑))) |
12 | | en0 6733 |
. . . . . . . 8
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) |
13 | | findcard2.5 |
. . . . . . . . 9
⊢ 𝜓 |
14 | | findcard2.1 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) |
15 | 13, 14 | mpbiri 167 |
. . . . . . . 8
⊢ (𝑥 = ∅ → 𝜑) |
16 | 12, 15 | sylbi 120 |
. . . . . . 7
⊢ (𝑥 ≈ ∅ → 𝜑) |
17 | 16 | ax-gen 1429 |
. . . . . 6
⊢
∀𝑥(𝑥 ≈ ∅ → 𝜑) |
18 | | peano3 4553 |
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ ω → suc 𝑣 ≠ ∅) |
19 | 18 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 ≠ ∅) |
20 | | breq1 3968 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 = ∅ → (𝑤 ≈ suc 𝑣 ↔ ∅ ≈ suc 𝑣)) |
21 | 20 | anbi2d 460 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ↔ (𝑣 ∈ ω ∧ ∅ ≈ suc
𝑣))) |
22 | | peano1 4551 |
. . . . . . . . . . . . . . . . . 18
⊢ ∅
∈ ω |
23 | | peano2 4552 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑣 ∈ ω → suc 𝑣 ∈
ω) |
24 | | nneneq 6795 |
. . . . . . . . . . . . . . . . . 18
⊢ ((∅
∈ ω ∧ suc 𝑣
∈ ω) → (∅ ≈ suc 𝑣 ↔ ∅ = suc 𝑣)) |
25 | 22, 23, 24 | sylancr 411 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑣 ∈ ω → (∅
≈ suc 𝑣 ↔
∅ = suc 𝑣)) |
26 | 25 | biimpa 294 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ ω ∧ ∅
≈ suc 𝑣) →
∅ = suc 𝑣) |
27 | 26 | eqcomd 2163 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ∈ ω ∧ ∅
≈ suc 𝑣) → suc
𝑣 =
∅) |
28 | 21, 27 | syl6bi 162 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = ∅ → ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 = ∅)) |
29 | 28 | com12 30 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 = ∅ → suc 𝑣 = ∅)) |
30 | 29 | necon3d 2371 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (suc 𝑣 ≠ ∅ → 𝑤 ≠ ∅)) |
31 | 19, 30 | mpd 13 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → 𝑤 ≠ ∅) |
32 | 31 | ex 114 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → 𝑤 ≠ ∅)) |
33 | | nnfi 6810 |
. . . . . . . . . . . . . . . 16
⊢ (suc
𝑣 ∈ ω → suc
𝑣 ∈
Fin) |
34 | 23, 33 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ ω → suc 𝑣 ∈ Fin) |
35 | 34 | adantr 274 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → suc 𝑣 ∈ Fin) |
36 | | enfi 6811 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ≈ suc 𝑣 → (𝑤 ∈ Fin ↔ suc 𝑣 ∈ Fin)) |
37 | 36 | adantl 275 |
. . . . . . . . . . . . . 14
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ∈ Fin ↔ suc 𝑣 ∈ Fin)) |
38 | 35, 37 | mpbird 166 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → 𝑤 ∈ Fin) |
39 | | fin0 6823 |
. . . . . . . . . . . . 13
⊢ (𝑤 ∈ Fin → (𝑤 ≠ ∅ ↔
∃𝑧 𝑧 ∈ 𝑤)) |
40 | 38, 39 | syl 14 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ≠ ∅ ↔ ∃𝑧 𝑧 ∈ 𝑤)) |
41 | | simpll 519 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑤) → 𝑣 ∈ ω) |
42 | | dif1en 6817 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣 ∧ 𝑧 ∈ 𝑤) → (𝑤 ∖ {𝑧}) ≈ 𝑣) |
43 | 42 | 3expa 1185 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑤) → (𝑤 ∖ {𝑧}) ≈ 𝑣) |
44 | | fidifsnid 6809 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑤 ∈ Fin ∧ 𝑧 ∈ 𝑤) → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤) |
45 | 38, 44 | sylan 281 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑤) → ((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤) |
46 | | vex 2715 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑤 ∈ V |
47 | | difexg 4105 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ V → (𝑤 ∖ {𝑧}) ∈ V) |
48 | 46, 47 | ax-mp 5 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∖ {𝑧}) ∈ V |
49 | | breq1 3968 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦 ≈ 𝑣 ↔ (𝑤 ∖ {𝑧}) ≈ 𝑣)) |
50 | 49 | anbi2d 460 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑤 ∖ {𝑧}) → ((𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣) ↔ (𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣))) |
51 | | uneq1 3254 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = (𝑤 ∖ {𝑧}) → (𝑦 ∪ {𝑧}) = ((𝑤 ∖ {𝑧}) ∪ {𝑧})) |
52 | 51 | sbceq1d 2942 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = (𝑤 ∖ {𝑧}) → ([(𝑦 ∪ {𝑧}) / 𝑥]𝜑 ↔ [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)) |
53 | 52 | imbi2d 229 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑦 = (𝑤 ∖ {𝑧}) → ((∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑))) |
54 | 50, 53 | imbi12d 233 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 = (𝑤 ∖ {𝑧}) → (((𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑)) ↔ ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)))) |
55 | | breq1 3968 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → (𝑥 ≈ 𝑣 ↔ 𝑦 ≈ 𝑣)) |
56 | | findcard2.2 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) |
57 | 55, 56 | imbi12d 233 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑥 = 𝑦 → ((𝑥 ≈ 𝑣 → 𝜑) ↔ (𝑦 ≈ 𝑣 → 𝜒))) |
58 | 57 | spv 1840 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → (𝑦 ≈ 𝑣 → 𝜒)) |
59 | | rspe 2506 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣) → ∃𝑣 ∈ ω 𝑦 ≈ 𝑣) |
60 | | isfi 6699 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ∈ Fin ↔ ∃𝑣 ∈ ω 𝑦 ≈ 𝑣) |
61 | 59, 60 | sylibr 133 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣) → 𝑦 ∈ Fin) |
62 | | pm2.27 40 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑦 ≈ 𝑣 → ((𝑦 ≈ 𝑣 → 𝜒) → 𝜒)) |
63 | 62 | adantl 275 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣) → ((𝑦 ≈ 𝑣 → 𝜒) → 𝜒)) |
64 | | findcard2.6 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) |
65 | 61, 63, 64 | sylsyld 58 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣) → ((𝑦 ≈ 𝑣 → 𝜒) → 𝜃)) |
66 | 58, 65 | syl5 32 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → 𝜃)) |
67 | | vex 2715 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑦 ∈ V |
68 | | vex 2715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝑧 ∈ V |
69 | 68 | snex 4145 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ {𝑧} ∈ V |
70 | 67, 69 | unex 4399 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 ∪ {𝑧}) ∈ V |
71 | | findcard2.3 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) |
72 | 70, 71 | sbcie 2971 |
. . . . . . . . . . . . . . . . . . 19
⊢
([(𝑦 ∪
{𝑧}) / 𝑥]𝜑 ↔ 𝜃) |
73 | 66, 72 | syl6ibr 161 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [(𝑦 ∪ {𝑧}) / 𝑥]𝜑)) |
74 | 48, 54, 73 | vtocl 2766 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑)) |
75 | | dfsbcq 2939 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ([((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑 ↔ [𝑤 / 𝑥]𝜑)) |
76 | 75 | imbi2d 229 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [((𝑤 ∖ {𝑧}) ∪ {𝑧}) / 𝑥]𝜑) ↔ (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑))) |
77 | 74, 76 | syl5ib 153 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑤 ∖ {𝑧}) ∪ {𝑧}) = 𝑤 → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑))) |
78 | 45, 77 | syl 14 |
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑤) → ((𝑣 ∈ ω ∧ (𝑤 ∖ {𝑧}) ≈ 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑))) |
79 | 41, 43, 78 | mp2and 430 |
. . . . . . . . . . . . . 14
⊢ (((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑤) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑)) |
80 | 79 | ex 114 |
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑧 ∈ 𝑤 → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑))) |
81 | 80 | exlimdv 1799 |
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (∃𝑧 𝑧 ∈ 𝑤 → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑))) |
82 | 40, 81 | sylbid 149 |
. . . . . . . . . . 11
⊢ ((𝑣 ∈ ω ∧ 𝑤 ≈ suc 𝑣) → (𝑤 ≠ ∅ → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑))) |
83 | 82 | ex 114 |
. . . . . . . . . 10
⊢ (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (𝑤 ≠ ∅ → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑)))) |
84 | 32, 83 | mpdd 41 |
. . . . . . . . 9
⊢ (𝑣 ∈ ω → (𝑤 ≈ suc 𝑣 → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → [𝑤 / 𝑥]𝜑))) |
85 | 84 | com23 78 |
. . . . . . . 8
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → (𝑤 ≈ suc 𝑣 → [𝑤 / 𝑥]𝜑))) |
86 | 85 | alrimdv 1856 |
. . . . . . 7
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ∀𝑤(𝑤 ≈ suc 𝑣 → [𝑤 / 𝑥]𝜑))) |
87 | | nfv 1508 |
. . . . . . . 8
⊢
Ⅎ𝑤(𝑥 ≈ suc 𝑣 → 𝜑) |
88 | | nfv 1508 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑤 ≈ suc 𝑣 |
89 | | nfsbc1v 2955 |
. . . . . . . . 9
⊢
Ⅎ𝑥[𝑤 / 𝑥]𝜑 |
90 | 88, 89 | nfim 1552 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑤 ≈ suc 𝑣 → [𝑤 / 𝑥]𝜑) |
91 | | breq1 3968 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝑥 ≈ suc 𝑣 ↔ 𝑤 ≈ suc 𝑣)) |
92 | | sbceq1a 2946 |
. . . . . . . . 9
⊢ (𝑥 = 𝑤 → (𝜑 ↔ [𝑤 / 𝑥]𝜑)) |
93 | 91, 92 | imbi12d 233 |
. . . . . . . 8
⊢ (𝑥 = 𝑤 → ((𝑥 ≈ suc 𝑣 → 𝜑) ↔ (𝑤 ≈ suc 𝑣 → [𝑤 / 𝑥]𝜑))) |
94 | 87, 90, 93 | cbval 1734 |
. . . . . . 7
⊢
(∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑) ↔ ∀𝑤(𝑤 ≈ suc 𝑣 → [𝑤 / 𝑥]𝜑)) |
95 | 86, 94 | syl6ibr 161 |
. . . . . 6
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑))) |
96 | 5, 8, 11, 17, 95 | finds1 4559 |
. . . . 5
⊢ (𝑤 ∈ ω →
∀𝑥(𝑥 ≈ 𝑤 → 𝜑)) |
97 | 96 | 19.21bi 1538 |
. . . 4
⊢ (𝑤 ∈ ω → (𝑥 ≈ 𝑤 → 𝜑)) |
98 | 97 | rexlimiv 2568 |
. . 3
⊢
(∃𝑤 ∈
ω 𝑥 ≈ 𝑤 → 𝜑) |
99 | 2, 98 | sylbi 120 |
. 2
⊢ (𝑥 ∈ Fin → 𝜑) |
100 | 1, 99 | vtoclga 2778 |
1
⊢ (𝐴 ∈ Fin → 𝜏) |