ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  findcard GIF version

Theorem findcard 6949
Description: Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
findcard.1 (𝑥 = ∅ → (𝜑𝜓))
findcard.2 (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))
findcard.3 (𝑥 = 𝑦 → (𝜑𝜃))
findcard.4 (𝑥 = 𝐴 → (𝜑𝜏))
findcard.5 𝜓
findcard.6 (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))
Assertion
Ref Expression
findcard (𝐴 ∈ Fin → 𝜏)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)   𝜒(𝑦,𝑧)   𝜃(𝑦,𝑧)   𝜏(𝑦,𝑧)

Proof of Theorem findcard
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 findcard.4 . 2 (𝑥 = 𝐴 → (𝜑𝜏))
2 isfi 6820 . . 3 (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥𝑤)
3 breq2 4037 . . . . . . . 8 (𝑤 = ∅ → (𝑥𝑤𝑥 ≈ ∅))
43imbi1d 231 . . . . . . 7 (𝑤 = ∅ → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ ∅ → 𝜑)))
54albidv 1838 . . . . . 6 (𝑤 = ∅ → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑)))
6 breq2 4037 . . . . . . . 8 (𝑤 = 𝑣 → (𝑥𝑤𝑥𝑣))
76imbi1d 231 . . . . . . 7 (𝑤 = 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥𝑣𝜑)))
87albidv 1838 . . . . . 6 (𝑤 = 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥𝑣𝜑)))
9 breq2 4037 . . . . . . . 8 (𝑤 = suc 𝑣 → (𝑥𝑤𝑥 ≈ suc 𝑣))
109imbi1d 231 . . . . . . 7 (𝑤 = suc 𝑣 → ((𝑥𝑤𝜑) ↔ (𝑥 ≈ suc 𝑣𝜑)))
1110albidv 1838 . . . . . 6 (𝑤 = suc 𝑣 → (∀𝑥(𝑥𝑤𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
12 en0 6854 . . . . . . . 8 (𝑥 ≈ ∅ ↔ 𝑥 = ∅)
13 findcard.5 . . . . . . . . 9 𝜓
14 findcard.1 . . . . . . . . 9 (𝑥 = ∅ → (𝜑𝜓))
1513, 14mpbiri 168 . . . . . . . 8 (𝑥 = ∅ → 𝜑)
1612, 15sylbi 121 . . . . . . 7 (𝑥 ≈ ∅ → 𝜑)
1716ax-gen 1463 . . . . . 6 𝑥(𝑥 ≈ ∅ → 𝜑)
18 peano2 4631 . . . . . . . . . . . . 13 (𝑣 ∈ ω → suc 𝑣 ∈ ω)
19 breq2 4037 . . . . . . . . . . . . . 14 (𝑤 = suc 𝑣 → (𝑦𝑤𝑦 ≈ suc 𝑣))
2019rspcev 2868 . . . . . . . . . . . . 13 ((suc 𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦𝑤)
2118, 20sylan 283 . . . . . . . . . . . 12 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦𝑤)
22 isfi 6820 . . . . . . . . . . . 12 (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦𝑤)
2321, 22sylibr 134 . . . . . . . . . . 11 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin)
24233adant2 1018 . . . . . . . . . 10 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin)
25 dif1en 6940 . . . . . . . . . . . . . . . 16 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣𝑧𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣)
26253expa 1205 . . . . . . . . . . . . . . 15 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣)
27 vex 2766 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
28 difexg 4174 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ V → (𝑦 ∖ {𝑧}) ∈ V)
2927, 28ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑦 ∖ {𝑧}) ∈ V
30 breq1 4036 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥𝑣 ↔ (𝑦 ∖ {𝑧}) ≈ 𝑣))
31 findcard.2 . . . . . . . . . . . . . . . . 17 (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑𝜒))
3230, 31imbi12d 234 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥𝑣𝜑) ↔ ((𝑦 ∖ {𝑧}) ≈ 𝑣𝜒)))
3329, 32spcv 2858 . . . . . . . . . . . . . . 15 (∀𝑥(𝑥𝑣𝜑) → ((𝑦 ∖ {𝑧}) ≈ 𝑣𝜒))
3426, 33syl5com 29 . . . . . . . . . . . . . 14 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧𝑦) → (∀𝑥(𝑥𝑣𝜑) → 𝜒))
3534ralrimdva 2577 . . . . . . . . . . . . 13 ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → (∀𝑥(𝑥𝑣𝜑) → ∀𝑧𝑦 𝜒))
3635imp 124 . . . . . . . . . . . 12 (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ ∀𝑥(𝑥𝑣𝜑)) → ∀𝑧𝑦 𝜒)
3736an32s 568 . . . . . . . . . . 11 (((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑)) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧𝑦 𝜒)
38373impa 1196 . . . . . . . . . 10 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧𝑦 𝜒)
39 findcard.6 . . . . . . . . . 10 (𝑦 ∈ Fin → (∀𝑧𝑦 𝜒𝜃))
4024, 38, 39sylc 62 . . . . . . . . 9 ((𝑣 ∈ ω ∧ ∀𝑥(𝑥𝑣𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝜃)
41403exp 1204 . . . . . . . 8 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → (𝑦 ≈ suc 𝑣𝜃)))
4241alrimdv 1890 . . . . . . 7 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑦(𝑦 ≈ suc 𝑣𝜃)))
43 breq1 4036 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑣𝑦 ≈ suc 𝑣))
44 findcard.3 . . . . . . . . 9 (𝑥 = 𝑦 → (𝜑𝜃))
4543, 44imbi12d 234 . . . . . . . 8 (𝑥 = 𝑦 → ((𝑥 ≈ suc 𝑣𝜑) ↔ (𝑦 ≈ suc 𝑣𝜃)))
4645cbvalv 1932 . . . . . . 7 (∀𝑥(𝑥 ≈ suc 𝑣𝜑) ↔ ∀𝑦(𝑦 ≈ suc 𝑣𝜃))
4742, 46imbitrrdi 162 . . . . . 6 (𝑣 ∈ ω → (∀𝑥(𝑥𝑣𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣𝜑)))
485, 8, 11, 17, 47finds1 4638 . . . . 5 (𝑤 ∈ ω → ∀𝑥(𝑥𝑤𝜑))
494819.21bi 1572 . . . 4 (𝑤 ∈ ω → (𝑥𝑤𝜑))
5049rexlimiv 2608 . . 3 (∃𝑤 ∈ ω 𝑥𝑤𝜑)
512, 50sylbi 121 . 2 (𝑥 ∈ Fin → 𝜑)
521, 51vtoclga 2830 1 (𝐴 ∈ Fin → 𝜏)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  Vcvv 2763  cdif 3154  c0 3450  {csn 3622   class class class wbr 4033  suc csuc 4400  ωcom 4626  cen 6797  Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  xpfi  6993
  Copyright terms: Public domain W3C validator