| Step | Hyp | Ref
 | Expression | 
| 1 |   | findcard.4 | 
. 2
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) | 
| 2 |   | isfi 6820 | 
. . 3
⊢ (𝑥 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑥 ≈ 𝑤) | 
| 3 |   | breq2 4037 | 
. . . . . . . 8
⊢ (𝑤 = ∅ → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ ∅)) | 
| 4 | 3 | imbi1d 231 | 
. . . . . . 7
⊢ (𝑤 = ∅ → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ ∅ → 𝜑))) | 
| 5 | 4 | albidv 1838 | 
. . . . . 6
⊢ (𝑤 = ∅ → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ ∅ → 𝜑))) | 
| 6 |   | breq2 4037 | 
. . . . . . . 8
⊢ (𝑤 = 𝑣 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ 𝑣)) | 
| 7 | 6 | imbi1d 231 | 
. . . . . . 7
⊢ (𝑤 = 𝑣 → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ 𝑣 → 𝜑))) | 
| 8 | 7 | albidv 1838 | 
. . . . . 6
⊢ (𝑤 = 𝑣 → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ 𝑣 → 𝜑))) | 
| 9 |   | breq2 4037 | 
. . . . . . . 8
⊢ (𝑤 = suc 𝑣 → (𝑥 ≈ 𝑤 ↔ 𝑥 ≈ suc 𝑣)) | 
| 10 | 9 | imbi1d 231 | 
. . . . . . 7
⊢ (𝑤 = suc 𝑣 → ((𝑥 ≈ 𝑤 → 𝜑) ↔ (𝑥 ≈ suc 𝑣 → 𝜑))) | 
| 11 | 10 | albidv 1838 | 
. . . . . 6
⊢ (𝑤 = suc 𝑣 → (∀𝑥(𝑥 ≈ 𝑤 → 𝜑) ↔ ∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑))) | 
| 12 |   | en0 6854 | 
. . . . . . . 8
⊢ (𝑥 ≈ ∅ ↔ 𝑥 = ∅) | 
| 13 |   | findcard.5 | 
. . . . . . . . 9
⊢ 𝜓 | 
| 14 |   | findcard.1 | 
. . . . . . . . 9
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) | 
| 15 | 13, 14 | mpbiri 168 | 
. . . . . . . 8
⊢ (𝑥 = ∅ → 𝜑) | 
| 16 | 12, 15 | sylbi 121 | 
. . . . . . 7
⊢ (𝑥 ≈ ∅ → 𝜑) | 
| 17 | 16 | ax-gen 1463 | 
. . . . . 6
⊢
∀𝑥(𝑥 ≈ ∅ → 𝜑) | 
| 18 |   | peano2 4631 | 
. . . . . . . . . . . . 13
⊢ (𝑣 ∈ ω → suc 𝑣 ∈
ω) | 
| 19 |   | breq2 4037 | 
. . . . . . . . . . . . . 14
⊢ (𝑤 = suc 𝑣 → (𝑦 ≈ 𝑤 ↔ 𝑦 ≈ suc 𝑣)) | 
| 20 | 19 | rspcev 2868 | 
. . . . . . . . . . . . 13
⊢ ((suc
𝑣 ∈ ω ∧
𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦 ≈ 𝑤) | 
| 21 | 18, 20 | sylan 283 | 
. . . . . . . . . . . 12
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → ∃𝑤 ∈ ω 𝑦 ≈ 𝑤) | 
| 22 |   | isfi 6820 | 
. . . . . . . . . . . 12
⊢ (𝑦 ∈ Fin ↔ ∃𝑤 ∈ ω 𝑦 ≈ 𝑤) | 
| 23 | 21, 22 | sylibr 134 | 
. . . . . . . . . . 11
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin) | 
| 24 | 23 | 3adant2 1018 | 
. . . . . . . . . 10
⊢ ((𝑣 ∈ ω ∧
∀𝑥(𝑥 ≈ 𝑣 → 𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝑦 ∈ Fin) | 
| 25 |   | dif1en 6940 | 
. . . . . . . . . . . . . . . 16
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣 ∧ 𝑧 ∈ 𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣) | 
| 26 | 25 | 3expa 1205 | 
. . . . . . . . . . . . . . 15
⊢ (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑦) → (𝑦 ∖ {𝑧}) ≈ 𝑣) | 
| 27 |   | vex 2766 | 
. . . . . . . . . . . . . . . . 17
⊢ 𝑦 ∈ V | 
| 28 |   | difexg 4174 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ V → (𝑦 ∖ {𝑧}) ∈ V) | 
| 29 | 27, 28 | ax-mp 5 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∖ {𝑧}) ∈ V | 
| 30 |   | breq1 4036 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝑥 ≈ 𝑣 ↔ (𝑦 ∖ {𝑧}) ≈ 𝑣)) | 
| 31 |   | findcard.2 | 
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) | 
| 32 | 30, 31 | imbi12d 234 | 
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = (𝑦 ∖ {𝑧}) → ((𝑥 ≈ 𝑣 → 𝜑) ↔ ((𝑦 ∖ {𝑧}) ≈ 𝑣 → 𝜒))) | 
| 33 | 29, 32 | spcv 2858 | 
. . . . . . . . . . . . . . 15
⊢
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ((𝑦 ∖ {𝑧}) ≈ 𝑣 → 𝜒)) | 
| 34 | 26, 33 | syl5com 29 | 
. . . . . . . . . . . . . 14
⊢ (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ 𝑧 ∈ 𝑦) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → 𝜒)) | 
| 35 | 34 | ralrimdva 2577 | 
. . . . . . . . . . . . 13
⊢ ((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) → (∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ∀𝑧 ∈ 𝑦 𝜒)) | 
| 36 | 35 | imp 124 | 
. . . . . . . . . . . 12
⊢ (((𝑣 ∈ ω ∧ 𝑦 ≈ suc 𝑣) ∧ ∀𝑥(𝑥 ≈ 𝑣 → 𝜑)) → ∀𝑧 ∈ 𝑦 𝜒) | 
| 37 | 36 | an32s 568 | 
. . . . . . . . . . 11
⊢ (((𝑣 ∈ ω ∧
∀𝑥(𝑥 ≈ 𝑣 → 𝜑)) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧 ∈ 𝑦 𝜒) | 
| 38 | 37 | 3impa 1196 | 
. . . . . . . . . 10
⊢ ((𝑣 ∈ ω ∧
∀𝑥(𝑥 ≈ 𝑣 → 𝜑) ∧ 𝑦 ≈ suc 𝑣) → ∀𝑧 ∈ 𝑦 𝜒) | 
| 39 |   | findcard.6 | 
. . . . . . . . . 10
⊢ (𝑦 ∈ Fin →
(∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) | 
| 40 | 24, 38, 39 | sylc 62 | 
. . . . . . . . 9
⊢ ((𝑣 ∈ ω ∧
∀𝑥(𝑥 ≈ 𝑣 → 𝜑) ∧ 𝑦 ≈ suc 𝑣) → 𝜃) | 
| 41 | 40 | 3exp 1204 | 
. . . . . . . 8
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → (𝑦 ≈ suc 𝑣 → 𝜃))) | 
| 42 | 41 | alrimdv 1890 | 
. . . . . . 7
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ∀𝑦(𝑦 ≈ suc 𝑣 → 𝜃))) | 
| 43 |   | breq1 4036 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝑥 ≈ suc 𝑣 ↔ 𝑦 ≈ suc 𝑣)) | 
| 44 |   | findcard.3 | 
. . . . . . . . 9
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) | 
| 45 | 43, 44 | imbi12d 234 | 
. . . . . . . 8
⊢ (𝑥 = 𝑦 → ((𝑥 ≈ suc 𝑣 → 𝜑) ↔ (𝑦 ≈ suc 𝑣 → 𝜃))) | 
| 46 | 45 | cbvalv 1932 | 
. . . . . . 7
⊢
(∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑) ↔ ∀𝑦(𝑦 ≈ suc 𝑣 → 𝜃)) | 
| 47 | 42, 46 | imbitrrdi 162 | 
. . . . . 6
⊢ (𝑣 ∈ ω →
(∀𝑥(𝑥 ≈ 𝑣 → 𝜑) → ∀𝑥(𝑥 ≈ suc 𝑣 → 𝜑))) | 
| 48 | 5, 8, 11, 17, 47 | finds1 4638 | 
. . . . 5
⊢ (𝑤 ∈ ω →
∀𝑥(𝑥 ≈ 𝑤 → 𝜑)) | 
| 49 | 48 | 19.21bi 1572 | 
. . . 4
⊢ (𝑤 ∈ ω → (𝑥 ≈ 𝑤 → 𝜑)) | 
| 50 | 49 | rexlimiv 2608 | 
. . 3
⊢
(∃𝑤 ∈
ω 𝑥 ≈ 𝑤 → 𝜑) | 
| 51 | 2, 50 | sylbi 121 | 
. 2
⊢ (𝑥 ∈ Fin → 𝜑) | 
| 52 | 1, 51 | vtoclga 2830 | 
1
⊢ (𝐴 ∈ Fin → 𝜏) |