ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genprndl GIF version

Theorem genprndl 7696
Description: The lower cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genprndl.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genprndl.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
genprndl.lower ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))
Assertion
Ref Expression
genprndl ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞   𝑔,𝐹,𝑞   𝐴,𝑟,𝑞,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑟,𝑔,   ,𝐹,𝑟,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑟

Proof of Theorem genprndl
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . . 10 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelvl 7687 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏)))
4 r2ex 2550 . . . . . . . . 9 (∃𝑎 ∈ (1st𝐴)∃𝑏 ∈ (1st𝐵)𝑞 = (𝑎𝐺𝑏) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
53, 4bitrdi 196 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))))
65biimpa 296 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))) → ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
76adantrl 478 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))
8 prop 7650 . . . . . . . . . . . . . . . 16 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
9 prnmaxl 7663 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑎 ∈ (1st𝐴)) → ∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐)
108, 9sylan 283 . . . . . . . . . . . . . . 15 ((𝐴P𝑎 ∈ (1st𝐴)) → ∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐)
11 prop 7650 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
12 prnmaxl 7663 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑏 ∈ (1st𝐵)) → ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑)
1311, 12sylan 283 . . . . . . . . . . . . . . 15 ((𝐵P𝑏 ∈ (1st𝐵)) → ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑)
1410, 13anim12i 338 . . . . . . . . . . . . . 14 (((𝐴P𝑎 ∈ (1st𝐴)) ∧ (𝐵P𝑏 ∈ (1st𝐵))) → (∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑))
1514an4s 590 . . . . . . . . . . . . 13 (((𝐴P𝐵P) ∧ (𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵))) → (∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑))
16 reeanv 2701 . . . . . . . . . . . . 13 (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎 <Q 𝑐𝑏 <Q 𝑑) ↔ (∃𝑐 ∈ (1st𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st𝐵)𝑏 <Q 𝑑))
1715, 16sylibr 134 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ (𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎 <Q 𝑐𝑏 <Q 𝑑))
18 genprndl.ord . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
19 genprndl.com . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
2018, 19genplt2i 7685 . . . . . . . . . . . . . 14 ((𝑎 <Q 𝑐𝑏 <Q 𝑑) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2120reximi 2627 . . . . . . . . . . . . 13 (∃𝑑 ∈ (1st𝐵)(𝑎 <Q 𝑐𝑏 <Q 𝑑) → ∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2221reximi 2627 . . . . . . . . . . . 12 (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎 <Q 𝑐𝑏 <Q 𝑑) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2317, 22syl 14 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
2423adantrr 479 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))
25 breq1 4085 . . . . . . . . . . . . . 14 (𝑞 = (𝑎𝐺𝑏) → (𝑞 <Q (𝑐𝐺𝑑) ↔ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)))
2625biimprd 158 . . . . . . . . . . . . 13 (𝑞 = (𝑎𝐺𝑏) → ((𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → 𝑞 <Q (𝑐𝐺𝑑)))
2726reximdv 2631 . . . . . . . . . . . 12 (𝑞 = (𝑎𝐺𝑏) → (∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
2827reximdv 2631 . . . . . . . . . . 11 (𝑞 = (𝑎𝐺𝑏) → (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
2928ad2antll 491 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) → (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
3024, 29mpd 13 . . . . . . . . 9 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑))
3130ex 115 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
3231exlimdvv 1944 . . . . . . 7 ((𝐴P𝐵P) → (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
3332adantr 276 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → (∃𝑎𝑏((𝑎 ∈ (1st𝐴) ∧ 𝑏 ∈ (1st𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑)))
347, 33mpd 13 . . . . 5 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑))
351, 2genpprecll 7689 . . . . . . . . 9 ((𝐴P𝐵P) → ((𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵)) → (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))))
3635imp 124 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵)))
37 elprnql 7656 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑐 ∈ (1st𝐴)) → 𝑐Q)
388, 37sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑐 ∈ (1st𝐴)) → 𝑐Q)
39 elprnql 7656 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑑 ∈ (1st𝐵)) → 𝑑Q)
4011, 39sylan 283 . . . . . . . . . . . 12 ((𝐵P𝑑 ∈ (1st𝐵)) → 𝑑Q)
4138, 40anim12i 338 . . . . . . . . . . 11 (((𝐴P𝑐 ∈ (1st𝐴)) ∧ (𝐵P𝑑 ∈ (1st𝐵))) → (𝑐Q𝑑Q))
4241an4s 590 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → (𝑐Q𝑑Q))
432caovcl 6151 . . . . . . . . . 10 ((𝑐Q𝑑Q) → (𝑐𝐺𝑑) ∈ Q)
4442, 43syl 14 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → (𝑐𝐺𝑑) ∈ Q)
45 breq2 4086 . . . . . . . . . . 11 (𝑟 = (𝑐𝐺𝑑) → (𝑞 <Q 𝑟𝑞 <Q (𝑐𝐺𝑑)))
46 eleq1 2292 . . . . . . . . . . 11 (𝑟 = (𝑐𝐺𝑑) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))))
4745, 46anbi12d 473 . . . . . . . . . 10 (𝑟 = (𝑐𝐺𝑑) → ((𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵)))))
4847adantl 277 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) ∧ 𝑟 = (𝑐𝐺𝑑)) → ((𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵)))))
4944, 48rspcedv 2911 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → ((𝑞 <Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
5036, 49mpan2d 428 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑐 ∈ (1st𝐴) ∧ 𝑑 ∈ (1st𝐵))) → (𝑞 <Q (𝑐𝐺𝑑) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
5150rexlimdvva 2656 . . . . . 6 ((𝐴P𝐵P) → (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
5251adantr 276 . . . . 5 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → (∃𝑐 ∈ (1st𝐴)∃𝑑 ∈ (1st𝐵)𝑞 <Q (𝑐𝐺𝑑) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
5334, 52mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑞Q𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))
5453expr 375 . . 3 (((𝐴P𝐵P) ∧ 𝑞Q) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
55 genprndl.lower . . . . . . . . . . 11 ((((𝐴P𝑔 ∈ (1st𝐴)) ∧ (𝐵P ∈ (1st𝐵))) ∧ 𝑥Q) → (𝑥 <Q (𝑔𝐺) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))
561, 2, 55genpcdl 7694 . . . . . . . . . 10 ((𝐴P𝐵P) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑟𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
5756alrimdv 1922 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) → ∀𝑥(𝑥 <Q 𝑟𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))))
58 breq1 4085 . . . . . . . . . . 11 (𝑥 = 𝑞 → (𝑥 <Q 𝑟𝑞 <Q 𝑟))
59 eleq1 2292 . . . . . . . . . . 11 (𝑥 = 𝑞 → (𝑥 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6058, 59imbi12d 234 . . . . . . . . . 10 (𝑥 = 𝑞 → ((𝑥 <Q 𝑟𝑥 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))))
6160cbvalv 1964 . . . . . . . . 9 (∀𝑥(𝑥 <Q 𝑟𝑥 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ ∀𝑞(𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6257, 61imbitrdi 161 . . . . . . . 8 ((𝐴P𝐵P) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) → ∀𝑞(𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))))
63 sp 1557 . . . . . . . 8 (∀𝑞(𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵))) → (𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6462, 63syl6 33 . . . . . . 7 ((𝐴P𝐵P) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) → (𝑞 <Q 𝑟𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))))
6564impd 254 . . . . . 6 ((𝐴P𝐵P) → ((𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 <Q 𝑟) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6665ancomsd 269 . . . . 5 ((𝐴P𝐵P) → ((𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6766ad2antrr 488 . . . 4 ((((𝐴P𝐵P) ∧ 𝑞Q) ∧ 𝑟Q) → ((𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6867rexlimdva 2648 . . 3 (((𝐴P𝐵P) ∧ 𝑞Q) → (∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))
6954, 68impbid 129 . 2 (((𝐴P𝐵P) ∧ 𝑞Q) → (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
7069ralrimiva 2603 1 ((𝐴P𝐵P) → ∀𝑞Q (𝑞 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟Q (𝑞 <Q 𝑟𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002  wal 1393   = wceq 1395  wex 1538  wcel 2200  wral 2508  wrex 2509  {crab 2512  cop 3669   class class class wbr 4082  cfv 5314  (class class class)co 5994  cmpo 5996  1st c1st 6274  2nd c2nd 6275  Qcnq 7455   <Q cltq 7460  Pcnp 7466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-iinf 4677
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-eprel 4377  df-id 4381  df-po 4384  df-iso 4385  df-iord 4454  df-on 4456  df-suc 4459  df-iom 4680  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-ov 5997  df-oprab 5998  df-mpo 5999  df-1st 6276  df-2nd 6277  df-recs 6441  df-irdg 6506  df-oadd 6556  df-omul 6557  df-er 6670  df-ec 6672  df-qs 6676  df-ni 7479  df-mi 7481  df-lti 7482  df-enq 7522  df-nqqs 7523  df-ltnqqs 7528  df-inp 7641
This theorem is referenced by:  addclpr  7712  mulclpr  7747
  Copyright terms: Public domain W3C validator