Step | Hyp | Ref
| Expression |
1 | | genpelvl.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ 〈{𝑥 ∈ Q ∣
∃𝑦 ∈
Q ∃𝑧
∈ Q (𝑦
∈ (1st ‘𝑤) ∧ 𝑧 ∈ (1st ‘𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥 ∈ Q ∣ ∃𝑦 ∈ Q
∃𝑧 ∈
Q (𝑦 ∈
(2nd ‘𝑤)
∧ 𝑧 ∈
(2nd ‘𝑣)
∧ 𝑥 = (𝑦𝐺𝑧))}〉) |
2 | | genpelvl.2 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ Q ∧
𝑧 ∈ Q)
→ (𝑦𝐺𝑧) ∈ Q) |
3 | 1, 2 | genpelvl 7474 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑞 ∈
(1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (1st ‘𝐴)∃𝑏 ∈ (1st ‘𝐵)𝑞 = (𝑎𝐺𝑏))) |
4 | | r2ex 2490 |
. . . . . . . . 9
⊢
(∃𝑎 ∈
(1st ‘𝐴)∃𝑏 ∈ (1st ‘𝐵)𝑞 = (𝑎𝐺𝑏) ↔ ∃𝑎∃𝑏((𝑎 ∈ (1st ‘𝐴) ∧ 𝑏 ∈ (1st ‘𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) |
5 | 3, 4 | bitrdi 195 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑞 ∈
(1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑎∃𝑏((𝑎 ∈ (1st ‘𝐴) ∧ 𝑏 ∈ (1st ‘𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)))) |
6 | 5 | biimpa 294 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑞 ∈
(1st ‘(𝐴𝐹𝐵))) → ∃𝑎∃𝑏((𝑎 ∈ (1st ‘𝐴) ∧ 𝑏 ∈ (1st ‘𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) |
7 | 6 | adantrl 475 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑞 ∈
Q ∧ 𝑞
∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑎∃𝑏((𝑎 ∈ (1st ‘𝐴) ∧ 𝑏 ∈ (1st ‘𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏))) |
8 | | prop 7437 |
. . . . . . . . . . . . . . . 16
⊢ (𝐴 ∈ P →
〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈
P) |
9 | | prnmaxl 7450 |
. . . . . . . . . . . . . . . 16
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑎 ∈ (1st
‘𝐴)) →
∃𝑐 ∈
(1st ‘𝐴)𝑎 <Q 𝑐) |
10 | 8, 9 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢ ((𝐴 ∈ P ∧
𝑎 ∈ (1st
‘𝐴)) →
∃𝑐 ∈
(1st ‘𝐴)𝑎 <Q 𝑐) |
11 | | prop 7437 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ P →
〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈
P) |
12 | | prnmaxl 7450 |
. . . . . . . . . . . . . . . 16
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑏 ∈ (1st
‘𝐵)) →
∃𝑑 ∈
(1st ‘𝐵)𝑏 <Q 𝑑) |
13 | 11, 12 | sylan 281 |
. . . . . . . . . . . . . . 15
⊢ ((𝐵 ∈ P ∧
𝑏 ∈ (1st
‘𝐵)) →
∃𝑑 ∈
(1st ‘𝐵)𝑏 <Q 𝑑) |
14 | 10, 13 | anim12i 336 |
. . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ P ∧
𝑎 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝑏 ∈ (1st
‘𝐵))) →
(∃𝑐 ∈
(1st ‘𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st ‘𝐵)𝑏 <Q 𝑑)) |
15 | 14 | an4s 583 |
. . . . . . . . . . . . 13
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑎 ∈
(1st ‘𝐴)
∧ 𝑏 ∈
(1st ‘𝐵)))
→ (∃𝑐 ∈
(1st ‘𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st ‘𝐵)𝑏 <Q 𝑑)) |
16 | | reeanv 2639 |
. . . . . . . . . . . . 13
⊢
(∃𝑐 ∈
(1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)(𝑎 <Q 𝑐 ∧ 𝑏 <Q 𝑑) ↔ (∃𝑐 ∈ (1st
‘𝐴)𝑎 <Q 𝑐 ∧ ∃𝑑 ∈ (1st ‘𝐵)𝑏 <Q 𝑑)) |
17 | 15, 16 | sylibr 133 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑎 ∈
(1st ‘𝐴)
∧ 𝑏 ∈
(1st ‘𝐵)))
→ ∃𝑐 ∈
(1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)(𝑎 <Q 𝑐 ∧ 𝑏 <Q 𝑑)) |
18 | | genprndl.ord |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q
∧ 𝑧 ∈
Q) → (𝑥
<Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) |
19 | | genprndl.com |
. . . . . . . . . . . . . . 15
⊢ ((𝑥 ∈ Q ∧
𝑦 ∈ Q)
→ (𝑥𝐺𝑦) = (𝑦𝐺𝑥)) |
20 | 18, 19 | genplt2i 7472 |
. . . . . . . . . . . . . 14
⊢ ((𝑎 <Q
𝑐 ∧ 𝑏 <Q 𝑑) → (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)) |
21 | 20 | reximi 2567 |
. . . . . . . . . . . . 13
⊢
(∃𝑑 ∈
(1st ‘𝐵)(𝑎 <Q 𝑐 ∧ 𝑏 <Q 𝑑) → ∃𝑑 ∈ (1st
‘𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)) |
22 | 21 | reximi 2567 |
. . . . . . . . . . . 12
⊢
(∃𝑐 ∈
(1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)(𝑎 <Q 𝑐 ∧ 𝑏 <Q 𝑑) → ∃𝑐 ∈ (1st
‘𝐴)∃𝑑 ∈ (1st
‘𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)) |
23 | 17, 22 | syl 14 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑎 ∈
(1st ‘𝐴)
∧ 𝑏 ∈
(1st ‘𝐵)))
→ ∃𝑐 ∈
(1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)) |
24 | 23 | adantrr 476 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ ((𝑎 ∈
(1st ‘𝐴)
∧ 𝑏 ∈
(1st ‘𝐵))
∧ 𝑞 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑)) |
25 | | breq1 3992 |
. . . . . . . . . . . . . 14
⊢ (𝑞 = (𝑎𝐺𝑏) → (𝑞 <Q (𝑐𝐺𝑑) ↔ (𝑎𝐺𝑏) <Q (𝑐𝐺𝑑))) |
26 | 25 | biimprd 157 |
. . . . . . . . . . . . 13
⊢ (𝑞 = (𝑎𝐺𝑏) → ((𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → 𝑞 <Q (𝑐𝐺𝑑))) |
27 | 26 | reximdv 2571 |
. . . . . . . . . . . 12
⊢ (𝑞 = (𝑎𝐺𝑏) → (∃𝑑 ∈ (1st ‘𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑))) |
28 | 27 | reximdv 2571 |
. . . . . . . . . . 11
⊢ (𝑞 = (𝑎𝐺𝑏) → (∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑))) |
29 | 28 | ad2antll 488 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ ((𝑎 ∈
(1st ‘𝐴)
∧ 𝑏 ∈
(1st ‘𝐵))
∧ 𝑞 = (𝑎𝐺𝑏))) → (∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)(𝑎𝐺𝑏) <Q (𝑐𝐺𝑑) → ∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑))) |
30 | 24, 29 | mpd 13 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ ((𝑎 ∈
(1st ‘𝐴)
∧ 𝑏 ∈
(1st ‘𝐵))
∧ 𝑞 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑)) |
31 | 30 | ex 114 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (((𝑎 ∈
(1st ‘𝐴)
∧ 𝑏 ∈
(1st ‘𝐵))
∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑))) |
32 | 31 | exlimdvv 1890 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (∃𝑎∃𝑏((𝑎 ∈ (1st ‘𝐴) ∧ 𝑏 ∈ (1st ‘𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑))) |
33 | 32 | adantr 274 |
. . . . . 6
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑞 ∈
Q ∧ 𝑞
∈ (1st ‘(𝐴𝐹𝐵)))) → (∃𝑎∃𝑏((𝑎 ∈ (1st ‘𝐴) ∧ 𝑏 ∈ (1st ‘𝐵)) ∧ 𝑞 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑))) |
34 | 7, 33 | mpd 13 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑞 ∈
Q ∧ 𝑞
∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑)) |
35 | 1, 2 | genpprecll 7476 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝑐 ∈
(1st ‘𝐴)
∧ 𝑑 ∈
(1st ‘𝐵))
→ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵)))) |
36 | 35 | imp 123 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑐 ∈
(1st ‘𝐴)
∧ 𝑑 ∈
(1st ‘𝐵)))
→ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))) |
37 | | elprnql 7443 |
. . . . . . . . . . . . 13
⊢
((〈(1st ‘𝐴), (2nd ‘𝐴)〉 ∈ P ∧ 𝑐 ∈ (1st
‘𝐴)) → 𝑐 ∈
Q) |
38 | 8, 37 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ P ∧
𝑐 ∈ (1st
‘𝐴)) → 𝑐 ∈
Q) |
39 | | elprnql 7443 |
. . . . . . . . . . . . 13
⊢
((〈(1st ‘𝐵), (2nd ‘𝐵)〉 ∈ P ∧ 𝑑 ∈ (1st
‘𝐵)) → 𝑑 ∈
Q) |
40 | 11, 39 | sylan 281 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ P ∧
𝑑 ∈ (1st
‘𝐵)) → 𝑑 ∈
Q) |
41 | 38, 40 | anim12i 336 |
. . . . . . . . . . 11
⊢ (((𝐴 ∈ P ∧
𝑐 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
𝑑 ∈ (1st
‘𝐵))) → (𝑐 ∈ Q ∧
𝑑 ∈
Q)) |
42 | 41 | an4s 583 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑐 ∈
(1st ‘𝐴)
∧ 𝑑 ∈
(1st ‘𝐵)))
→ (𝑐 ∈
Q ∧ 𝑑
∈ Q)) |
43 | 2 | caovcl 6007 |
. . . . . . . . . 10
⊢ ((𝑐 ∈ Q ∧
𝑑 ∈ Q)
→ (𝑐𝐺𝑑) ∈ Q) |
44 | 42, 43 | syl 14 |
. . . . . . . . 9
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑐 ∈
(1st ‘𝐴)
∧ 𝑑 ∈
(1st ‘𝐵)))
→ (𝑐𝐺𝑑) ∈ Q) |
45 | | breq2 3993 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑐𝐺𝑑) → (𝑞 <Q 𝑟 ↔ 𝑞 <Q (𝑐𝐺𝑑))) |
46 | | eleq1 2233 |
. . . . . . . . . . 11
⊢ (𝑟 = (𝑐𝐺𝑑) → (𝑟 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵)))) |
47 | 45, 46 | anbi12d 470 |
. . . . . . . . . 10
⊢ (𝑟 = (𝑐𝐺𝑑) → ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))))) |
48 | 47 | adantl 275 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑐 ∈
(1st ‘𝐴)
∧ 𝑑 ∈
(1st ‘𝐵)))
∧ 𝑟 = (𝑐𝐺𝑑)) → ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))))) |
49 | 44, 48 | rspcedv 2838 |
. . . . . . . 8
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑐 ∈
(1st ‘𝐴)
∧ 𝑑 ∈
(1st ‘𝐵)))
→ ((𝑞
<Q (𝑐𝐺𝑑) ∧ (𝑐𝐺𝑑) ∈ (1st ‘(𝐴𝐹𝐵))) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))) |
50 | 36, 49 | mpan2d 426 |
. . . . . . 7
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑐 ∈
(1st ‘𝐴)
∧ 𝑑 ∈
(1st ‘𝐵)))
→ (𝑞
<Q (𝑐𝐺𝑑) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))) |
51 | 50 | rexlimdvva 2595 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (∃𝑐 ∈
(1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))) |
52 | 51 | adantr 274 |
. . . . 5
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑞 ∈
Q ∧ 𝑞
∈ (1st ‘(𝐴𝐹𝐵)))) → (∃𝑐 ∈ (1st ‘𝐴)∃𝑑 ∈ (1st ‘𝐵)𝑞 <Q (𝑐𝐺𝑑) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))) |
53 | 34, 52 | mpd 13 |
. . . 4
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ (𝑞 ∈
Q ∧ 𝑞
∈ (1st ‘(𝐴𝐹𝐵)))) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵)))) |
54 | 53 | expr 373 |
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑞 ∈
Q) → (𝑞
∈ (1st ‘(𝐴𝐹𝐵)) → ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))) |
55 | | genprndl.lower |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ P ∧
𝑔 ∈ (1st
‘𝐴)) ∧ (𝐵 ∈ P ∧
ℎ ∈ (1st
‘𝐵))) ∧ 𝑥 ∈ Q) →
(𝑥
<Q (𝑔𝐺ℎ) → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵)))) |
56 | 1, 2, 55 | genpcdl 7481 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑟 ∈
(1st ‘(𝐴𝐹𝐵)) → (𝑥 <Q 𝑟 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
57 | 56 | alrimdv 1869 |
. . . . . . . . 9
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑟 ∈
(1st ‘(𝐴𝐹𝐵)) → ∀𝑥(𝑥 <Q 𝑟 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))))) |
58 | | breq1 3992 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑞 → (𝑥 <Q 𝑟 ↔ 𝑞 <Q 𝑟)) |
59 | | eleq1 2233 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑞 → (𝑥 ∈ (1st ‘(𝐴𝐹𝐵)) ↔ 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) |
60 | 58, 59 | imbi12d 233 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑞 → ((𝑥 <Q 𝑟 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q 𝑟 → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))) |
61 | 60 | cbvalv 1910 |
. . . . . . . . 9
⊢
(∀𝑥(𝑥 <Q
𝑟 → 𝑥 ∈ (1st ‘(𝐴𝐹𝐵))) ↔ ∀𝑞(𝑞 <Q 𝑟 → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) |
62 | 57, 61 | syl6ib 160 |
. . . . . . . 8
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑟 ∈
(1st ‘(𝐴𝐹𝐵)) → ∀𝑞(𝑞 <Q 𝑟 → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))) |
63 | | sp 1504 |
. . . . . . . 8
⊢
(∀𝑞(𝑞 <Q
𝑟 → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))) → (𝑞 <Q 𝑟 → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) |
64 | 62, 63 | syl6 33 |
. . . . . . 7
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ (𝑟 ∈
(1st ‘(𝐴𝐹𝐵)) → (𝑞 <Q 𝑟 → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵))))) |
65 | 64 | impd 252 |
. . . . . 6
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝑟 ∈
(1st ‘(𝐴𝐹𝐵)) ∧ 𝑞 <Q 𝑟) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) |
66 | 65 | ancomsd 267 |
. . . . 5
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ((𝑞
<Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) |
67 | 66 | ad2antrr 485 |
. . . 4
⊢ ((((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑞 ∈
Q) ∧ 𝑟
∈ Q) → ((𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) |
68 | 67 | rexlimdva 2587 |
. . 3
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑞 ∈
Q) → (∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))) → 𝑞 ∈ (1st ‘(𝐴𝐹𝐵)))) |
69 | 54, 68 | impbid 128 |
. 2
⊢ (((𝐴 ∈ P ∧
𝐵 ∈ P)
∧ 𝑞 ∈
Q) → (𝑞
∈ (1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))) |
70 | 69 | ralrimiva 2543 |
1
⊢ ((𝐴 ∈ P ∧
𝐵 ∈ P)
→ ∀𝑞 ∈
Q (𝑞 ∈
(1st ‘(𝐴𝐹𝐵)) ↔ ∃𝑟 ∈ Q (𝑞 <Q 𝑟 ∧ 𝑟 ∈ (1st ‘(𝐴𝐹𝐵))))) |