![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1885 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1458 ax-gen 1460 ax-17 1537 |
This theorem is referenced by: 2ax17 1889 euind 2948 sbnfc2 3142 exmidsssn 4232 exmidel 4235 exmidundif 4236 exmidundifim 4237 ssopab2dv 4310 suctr 4453 eusvnf 4485 ordsuc 4596 ssrel 4748 relssdv 4752 eqrelrdv 4756 eqbrrdv 4757 eqrelrdv2 4759 ssrelrel 4760 iss 4989 funssres 5297 funun 5299 fununi 5323 fsn 5731 ovg 6059 caovimo 6114 oprabexd 6181 qliftfund 6674 eroveu 6682 th3qlem1 6693 exmidfodomrlemim 7263 exmidmotap 7323 addnq0mo 7509 mulnq0mo 7510 ltexprlemdisj 7668 recexprlemdisj 7692 addsrmo 7805 mulsrmo 7806 seqf1og 10595 summodc 11529 prodmodc 11724 pceu 12436 rhmex 13656 limcimo 14844 exmidsbth 15584 |
Copyright terms: Public domain | W3C validator |