| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1897 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1897 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1470 ax-gen 1472 ax-17 1549 |
| This theorem is referenced by: 2ax17 1901 euind 2960 sbnfc2 3154 exmidsssn 4246 exmidel 4249 exmidundif 4250 exmidundifim 4251 ssopab2dv 4325 suctr 4468 eusvnf 4500 ordsuc 4611 ssrel 4763 relssdv 4767 eqrelrdv 4771 eqbrrdv 4772 eqrelrdv2 4774 ssrelrel 4775 iss 5005 funssres 5313 funun 5315 fununi 5342 fsn 5752 ovg 6085 caovimo 6140 oprabexd 6212 qliftfund 6705 eroveu 6713 th3qlem1 6724 exmidfodomrlemim 7309 exmidmotap 7373 addnq0mo 7560 mulnq0mo 7561 ltexprlemdisj 7719 recexprlemdisj 7743 addsrmo 7856 mulsrmo 7857 seqf1og 10666 summodc 11694 prodmodc 11889 pceu 12618 rhmex 13919 limcimo 15137 exmidsbth 15963 |
| Copyright terms: Public domain | W3C validator |