![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1885 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1885 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1458 ax-gen 1460 ax-17 1537 |
This theorem is referenced by: 2ax17 1889 euind 2947 sbnfc2 3141 exmidsssn 4231 exmidel 4234 exmidundif 4235 exmidundifim 4236 ssopab2dv 4309 suctr 4452 eusvnf 4484 ordsuc 4595 ssrel 4747 relssdv 4751 eqrelrdv 4755 eqbrrdv 4756 eqrelrdv2 4758 ssrelrel 4759 iss 4988 funssres 5296 funun 5298 fununi 5322 fsn 5730 ovg 6057 caovimo 6112 oprabexd 6179 qliftfund 6672 eroveu 6680 th3qlem1 6691 exmidfodomrlemim 7261 exmidmotap 7321 addnq0mo 7507 mulnq0mo 7508 ltexprlemdisj 7666 recexprlemdisj 7690 addsrmo 7803 mulsrmo 7804 seqf1og 10592 summodc 11526 prodmodc 11721 pceu 12433 rhmex 13653 limcimo 14819 exmidsbth 15514 |
Copyright terms: Public domain | W3C validator |