| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1898 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1898 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1471 ax-gen 1473 ax-17 1550 |
| This theorem is referenced by: 2ax17 1902 euind 2967 sbnfc2 3162 exmidsssn 4262 exmidel 4265 exmidundif 4266 exmidundifim 4267 ssopab2dv 4343 suctr 4486 eusvnf 4518 ordsuc 4629 ssrel 4781 relssdv 4785 eqrelrdv 4789 eqbrrdv 4790 eqrelrdv2 4792 ssrelrel 4793 iss 5024 funssres 5332 funun 5334 fununi 5361 fsn 5775 ovg 6108 caovimo 6163 oprabexd 6235 qliftfund 6728 eroveu 6736 th3qlem1 6747 exmidfodomrlemim 7340 exmidmotap 7408 addnq0mo 7595 mulnq0mo 7596 ltexprlemdisj 7754 recexprlemdisj 7778 addsrmo 7891 mulsrmo 7892 seqf1og 10703 summodc 11809 prodmodc 12004 pceu 12733 rhmex 14034 limcimo 15252 exmidsbth 16165 |
| Copyright terms: Public domain | W3C validator |