![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1874 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1874 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1447 ax-gen 1449 ax-17 1526 |
This theorem is referenced by: 2ax17 1878 euind 2926 sbnfc2 3119 exmidsssn 4204 exmidel 4207 exmidundif 4208 exmidundifim 4209 ssopab2dv 4280 suctr 4423 eusvnf 4455 ordsuc 4564 ssrel 4716 relssdv 4720 eqrelrdv 4724 eqbrrdv 4725 eqrelrdv2 4727 ssrelrel 4728 iss 4955 funssres 5260 funun 5262 fununi 5286 fsn 5690 ovg 6015 caovimo 6070 oprabexd 6130 qliftfund 6620 eroveu 6628 th3qlem1 6639 exmidfodomrlemim 7202 exmidmotap 7262 addnq0mo 7448 mulnq0mo 7449 ltexprlemdisj 7607 recexprlemdisj 7631 addsrmo 7744 mulsrmo 7745 summodc 11393 prodmodc 11588 pceu 12297 limcimo 14173 exmidsbth 14811 |
Copyright terms: Public domain | W3C validator |