| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1920 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1920 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1393 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1493 ax-gen 1495 ax-17 1572 |
| This theorem is referenced by: 2ax17 1924 euind 2990 sbnfc2 3185 exmidsssn 4286 exmidel 4289 exmidundif 4290 exmidundifim 4291 ssopab2dv 4367 suctr 4512 eusvnf 4544 ordsuc 4655 ssrel 4807 relssdv 4811 eqrelrdv 4815 eqbrrdv 4816 eqrelrdv2 4818 ssrelrel 4819 iss 5051 funssres 5360 funun 5362 fununi 5389 fsn 5807 ovg 6144 caovimo 6199 oprabexd 6272 qliftfund 6765 eroveu 6773 th3qlem1 6784 exmidfodomrlemim 7379 exmidmotap 7447 addnq0mo 7634 mulnq0mo 7635 ltexprlemdisj 7793 recexprlemdisj 7817 addsrmo 7930 mulsrmo 7931 seqf1og 10743 summodc 11894 prodmodc 12089 pceu 12818 rhmex 14121 limcimo 15339 exmidsbth 16392 |
| Copyright terms: Public domain | W3C validator |