Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1862 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1862 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1435 ax-gen 1437 ax-17 1514 |
This theorem is referenced by: 2ax17 1866 euind 2912 sbnfc2 3104 exmidsssn 4180 exmidel 4183 exmidundif 4184 exmidundifim 4185 ssopab2dv 4255 suctr 4398 eusvnf 4430 ordsuc 4539 ssrel 4691 relssdv 4695 eqrelrdv 4699 eqbrrdv 4700 eqrelrdv2 4702 ssrelrel 4703 iss 4929 funssres 5229 funun 5231 fununi 5255 fsn 5656 ovg 5976 caovimo 6031 oprabexd 6092 qliftfund 6580 eroveu 6588 th3qlem1 6599 exmidfodomrlemim 7153 addnq0mo 7384 mulnq0mo 7385 ltexprlemdisj 7543 recexprlemdisj 7567 addsrmo 7680 mulsrmo 7681 summodc 11320 prodmodc 11515 pceu 12223 limcimo 13234 exmidsbth 13863 |
Copyright terms: Public domain | W3C validator |