| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1888 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1461 ax-gen 1463 ax-17 1540 |
| This theorem is referenced by: 2ax17 1892 euind 2951 sbnfc2 3145 exmidsssn 4235 exmidel 4238 exmidundif 4239 exmidundifim 4240 ssopab2dv 4313 suctr 4456 eusvnf 4488 ordsuc 4599 ssrel 4751 relssdv 4755 eqrelrdv 4759 eqbrrdv 4760 eqrelrdv2 4762 ssrelrel 4763 iss 4992 funssres 5300 funun 5302 fununi 5326 fsn 5734 ovg 6062 caovimo 6117 oprabexd 6184 qliftfund 6677 eroveu 6685 th3qlem1 6696 exmidfodomrlemim 7268 exmidmotap 7328 addnq0mo 7514 mulnq0mo 7515 ltexprlemdisj 7673 recexprlemdisj 7697 addsrmo 7810 mulsrmo 7811 seqf1og 10613 summodc 11548 prodmodc 11743 pceu 12464 rhmex 13713 limcimo 14901 exmidsbth 15668 |
| Copyright terms: Public domain | W3C validator |