| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1888 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1888 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1362 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1461 ax-gen 1463 ax-17 1540 |
| This theorem is referenced by: 2ax17 1892 euind 2951 sbnfc2 3145 exmidsssn 4236 exmidel 4239 exmidundif 4240 exmidundifim 4241 ssopab2dv 4314 suctr 4457 eusvnf 4489 ordsuc 4600 ssrel 4752 relssdv 4756 eqrelrdv 4760 eqbrrdv 4761 eqrelrdv2 4763 ssrelrel 4764 iss 4993 funssres 5301 funun 5303 fununi 5327 fsn 5737 ovg 6066 caovimo 6121 oprabexd 6193 qliftfund 6686 eroveu 6694 th3qlem1 6705 exmidfodomrlemim 7282 exmidmotap 7346 addnq0mo 7533 mulnq0mo 7534 ltexprlemdisj 7692 recexprlemdisj 7716 addsrmo 7829 mulsrmo 7830 seqf1og 10632 summodc 11567 prodmodc 11762 pceu 12491 rhmex 13791 limcimo 15009 exmidsbth 15781 |
| Copyright terms: Public domain | W3C validator |