![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
Ref | Expression |
---|---|
alrimivv.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | 1 | alrimiv 1874 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
3 | 2 | alrimiv 1874 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∀wal 1351 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1447 ax-gen 1449 ax-17 1526 |
This theorem is referenced by: 2ax17 1878 euind 2925 sbnfc2 3118 exmidsssn 4203 exmidel 4206 exmidundif 4207 exmidundifim 4208 ssopab2dv 4279 suctr 4422 eusvnf 4454 ordsuc 4563 ssrel 4715 relssdv 4719 eqrelrdv 4723 eqbrrdv 4724 eqrelrdv2 4726 ssrelrel 4727 iss 4954 funssres 5259 funun 5261 fununi 5285 fsn 5689 ovg 6013 caovimo 6068 oprabexd 6128 qliftfund 6618 eroveu 6626 th3qlem1 6637 exmidfodomrlemim 7200 exmidmotap 7260 addnq0mo 7446 mulnq0mo 7447 ltexprlemdisj 7605 recexprlemdisj 7629 addsrmo 7742 mulsrmo 7743 summodc 11391 prodmodc 11586 pceu 12295 limcimo 14137 exmidsbth 14775 |
Copyright terms: Public domain | W3C validator |