| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > alrimivv | GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.) |
| Ref | Expression |
|---|---|
| alrimivv.1 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| alrimivv | ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alrimivv.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | 1 | alrimiv 1897 | . 2 ⊢ (𝜑 → ∀𝑦𝜓) |
| 3 | 2 | alrimiv 1897 | 1 ⊢ (𝜑 → ∀𝑥∀𝑦𝜓) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∀wal 1371 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-5 1470 ax-gen 1472 ax-17 1549 |
| This theorem is referenced by: 2ax17 1901 euind 2960 sbnfc2 3154 exmidsssn 4247 exmidel 4250 exmidundif 4251 exmidundifim 4252 ssopab2dv 4326 suctr 4469 eusvnf 4501 ordsuc 4612 ssrel 4764 relssdv 4768 eqrelrdv 4772 eqbrrdv 4773 eqrelrdv2 4775 ssrelrel 4776 iss 5006 funssres 5314 funun 5316 fununi 5343 fsn 5754 ovg 6087 caovimo 6142 oprabexd 6214 qliftfund 6707 eroveu 6715 th3qlem1 6726 exmidfodomrlemim 7311 exmidmotap 7375 addnq0mo 7562 mulnq0mo 7563 ltexprlemdisj 7721 recexprlemdisj 7745 addsrmo 7858 mulsrmo 7859 seqf1og 10668 summodc 11727 prodmodc 11922 pceu 12651 rhmex 13952 limcimo 15170 exmidsbth 16000 |
| Copyright terms: Public domain | W3C validator |