ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  alrimivv GIF version

Theorem alrimivv 1875
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Contributed by NM, 31-Jul-1995.)
Hypothesis
Ref Expression
alrimivv.1 (𝜑𝜓)
Assertion
Ref Expression
alrimivv (𝜑 → ∀𝑥𝑦𝜓)
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem alrimivv
StepHypRef Expression
1 alrimivv.1 . . 3 (𝜑𝜓)
21alrimiv 1874 . 2 (𝜑 → ∀𝑦𝜓)
32alrimiv 1874 1 (𝜑 → ∀𝑥𝑦𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wal 1351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-5 1447  ax-gen 1449  ax-17 1526
This theorem is referenced by:  2ax17  1878  euind  2926  sbnfc2  3119  exmidsssn  4204  exmidel  4207  exmidundif  4208  exmidundifim  4209  ssopab2dv  4280  suctr  4423  eusvnf  4455  ordsuc  4564  ssrel  4716  relssdv  4720  eqrelrdv  4724  eqbrrdv  4725  eqrelrdv2  4727  ssrelrel  4728  iss  4955  funssres  5260  funun  5262  fununi  5286  fsn  5690  ovg  6015  caovimo  6070  oprabexd  6130  qliftfund  6620  eroveu  6628  th3qlem1  6639  exmidfodomrlemim  7202  exmidmotap  7262  addnq0mo  7448  mulnq0mo  7449  ltexprlemdisj  7607  recexprlemdisj  7631  addsrmo  7744  mulsrmo  7745  summodc  11393  prodmodc  11588  pceu  12297  limcimo  14173  exmidsbth  14811
  Copyright terms: Public domain W3C validator