ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genprndu GIF version

Theorem genprndu 7178
Description: The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genprndu.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genprndu.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
genprndu.upper ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
Assertion
Ref Expression
genprndu ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞   𝑔,𝐹,𝑞   𝐴,𝑟,𝑞,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑟,𝑔,   ,𝐹,𝑟,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑟

Proof of Theorem genprndu
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . . 10 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelvu 7169 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (2nd𝐴)∃𝑏 ∈ (2nd𝐵)𝑟 = (𝑎𝐺𝑏)))
4 r2ex 2409 . . . . . . . . 9 (∃𝑎 ∈ (2nd𝐴)∃𝑏 ∈ (2nd𝐵)𝑟 = (𝑎𝐺𝑏) ↔ ∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)))
53, 4syl6bb 195 . . . . . . . 8 ((𝐴P𝐵P) → (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏))))
65biimpa 291 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))) → ∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)))
76adantrl 463 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)))
8 prop 7131 . . . . . . . . . . . . . . . 16 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
9 prnminu 7145 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑎 ∈ (2nd𝐴)) → ∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎)
108, 9sylan 278 . . . . . . . . . . . . . . 15 ((𝐴P𝑎 ∈ (2nd𝐴)) → ∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎)
11 prop 7131 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
12 prnminu 7145 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑏 ∈ (2nd𝐵)) → ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏)
1311, 12sylan 278 . . . . . . . . . . . . . . 15 ((𝐵P𝑏 ∈ (2nd𝐵)) → ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏)
1410, 13anim12i 332 . . . . . . . . . . . . . 14 (((𝐴P𝑎 ∈ (2nd𝐴)) ∧ (𝐵P𝑏 ∈ (2nd𝐵))) → (∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎 ∧ ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏))
1514an4s 556 . . . . . . . . . . . . 13 (((𝐴P𝐵P) ∧ (𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵))) → (∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎 ∧ ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏))
16 reeanv 2550 . . . . . . . . . . . . 13 (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐 <Q 𝑎𝑑 <Q 𝑏) ↔ (∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎 ∧ ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏))
1715, 16sylibr 133 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ (𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐 <Q 𝑎𝑑 <Q 𝑏))
18 genprndu.ord . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
19 genprndu.com . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
2018, 19genplt2i 7166 . . . . . . . . . . . . . 14 ((𝑐 <Q 𝑎𝑑 <Q 𝑏) → (𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
2120reximi 2482 . . . . . . . . . . . . 13 (∃𝑑 ∈ (2nd𝐵)(𝑐 <Q 𝑎𝑑 <Q 𝑏) → ∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
2221reximi 2482 . . . . . . . . . . . 12 (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐 <Q 𝑎𝑑 <Q 𝑏) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
2317, 22syl 14 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
2423adantrr 464 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
25 breq2 3871 . . . . . . . . . . . . . 14 (𝑟 = (𝑎𝐺𝑏) → ((𝑐𝐺𝑑) <Q 𝑟 ↔ (𝑐𝐺𝑑) <Q (𝑎𝐺𝑏)))
2625biimprd 157 . . . . . . . . . . . . 13 (𝑟 = (𝑎𝐺𝑏) → ((𝑐𝐺𝑑) <Q (𝑎𝐺𝑏) → (𝑐𝐺𝑑) <Q 𝑟))
2726reximdv 2486 . . . . . . . . . . . 12 (𝑟 = (𝑎𝐺𝑏) → (∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏) → ∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
2827reximdv 2486 . . . . . . . . . . 11 (𝑟 = (𝑎𝐺𝑏) → (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
2928ad2antll 476 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏))) → (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
3024, 29mpd 13 . . . . . . . . 9 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟)
3130ex 114 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
3231exlimdvv 1832 . . . . . . 7 ((𝐴P𝐵P) → (∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
3332adantr 271 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
347, 33mpd 13 . . . . 5 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟)
351, 2genppreclu 7171 . . . . . . . . 9 ((𝐴P𝐵P) → ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) → (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵))))
3635imp 123 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵)))
37 elprnqu 7138 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑐 ∈ (2nd𝐴)) → 𝑐Q)
388, 37sylan 278 . . . . . . . . . . . 12 ((𝐴P𝑐 ∈ (2nd𝐴)) → 𝑐Q)
39 elprnqu 7138 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑑 ∈ (2nd𝐵)) → 𝑑Q)
4011, 39sylan 278 . . . . . . . . . . . 12 ((𝐵P𝑑 ∈ (2nd𝐵)) → 𝑑Q)
4138, 40anim12i 332 . . . . . . . . . . 11 (((𝐴P𝑐 ∈ (2nd𝐴)) ∧ (𝐵P𝑑 ∈ (2nd𝐵))) → (𝑐Q𝑑Q))
4241an4s 556 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑐Q𝑑Q))
432caovcl 5837 . . . . . . . . . 10 ((𝑐Q𝑑Q) → (𝑐𝐺𝑑) ∈ Q)
4442, 43syl 14 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑐𝐺𝑑) ∈ Q)
45 breq1 3870 . . . . . . . . . . 11 (𝑞 = (𝑐𝐺𝑑) → (𝑞 <Q 𝑟 ↔ (𝑐𝐺𝑑) <Q 𝑟))
46 eleq1 2157 . . . . . . . . . . 11 (𝑞 = (𝑐𝐺𝑑) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵))))
4745, 46anbi12d 458 . . . . . . . . . 10 (𝑞 = (𝑐𝐺𝑑) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ((𝑐𝐺𝑑) <Q 𝑟 ∧ (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵)))))
4847adantl 272 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) ∧ 𝑞 = (𝑐𝐺𝑑)) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ((𝑐𝐺𝑑) <Q 𝑟 ∧ (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵)))))
4944, 48rspcedv 2740 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (((𝑐𝐺𝑑) <Q 𝑟 ∧ (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5036, 49mpan2d 420 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → ((𝑐𝐺𝑑) <Q 𝑟 → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5150rexlimdvva 2510 . . . . . 6 ((𝐴P𝐵P) → (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟 → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5251adantr 271 . . . . 5 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟 → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5334, 52mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
5453expr 368 . . 3 (((𝐴P𝐵P) ∧ 𝑟Q) → (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
55 genprndu.upper . . . . . . . . . . 11 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
561, 2, 55genpcuu 7176 . . . . . . . . . 10 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑞 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5756alrimdv 1811 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) → ∀𝑥(𝑞 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
58 breq2 3871 . . . . . . . . . . 11 (𝑥 = 𝑟 → (𝑞 <Q 𝑥𝑞 <Q 𝑟))
59 eleq1 2157 . . . . . . . . . . 11 (𝑥 = 𝑟 → (𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6058, 59imbi12d 233 . . . . . . . . . 10 (𝑥 = 𝑟 → ((𝑞 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))))
6160cbvalv 1849 . . . . . . . . 9 (∀𝑥(𝑞 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ∀𝑟(𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6257, 61syl6ib 160 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) → ∀𝑟(𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))))
63 sp 1453 . . . . . . . 8 (∀𝑟(𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))) → (𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6462, 63syl6 33 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))))
6564impd 252 . . . . . 6 ((𝐴P𝐵P) → ((𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ∧ 𝑞 <Q 𝑟) → 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6665ancomsd 266 . . . . 5 ((𝐴P𝐵P) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) → 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6766ad2antrr 473 . . . 4 ((((𝐴P𝐵P) ∧ 𝑟Q) ∧ 𝑞Q) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) → 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6867rexlimdva 2502 . . 3 (((𝐴P𝐵P) ∧ 𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) → 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6954, 68impbid 128 . 2 (((𝐴P𝐵P) ∧ 𝑟Q) → (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
7069ralrimiva 2458 1 ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 927  wal 1294   = wceq 1296  wex 1433  wcel 1445  wral 2370  wrex 2371  {crab 2374  cop 3469   class class class wbr 3867  cfv 5049  (class class class)co 5690  cmpt2 5692  1st c1st 5947  2nd c2nd 5948  Qcnq 6936   <Q cltq 6941  Pcnp 6947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-13 1456  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-coll 3975  ax-sep 3978  ax-nul 3986  ax-pow 4030  ax-pr 4060  ax-un 4284  ax-setind 4381  ax-iinf 4431
This theorem depends on definitions:  df-bi 116  df-dc 784  df-3or 928  df-3an 929  df-tru 1299  df-fal 1302  df-nf 1402  df-sb 1700  df-eu 1958  df-mo 1959  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ne 2263  df-ral 2375  df-rex 2376  df-reu 2377  df-rab 2379  df-v 2635  df-sbc 2855  df-csb 2948  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026  df-nul 3303  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-int 3711  df-iun 3754  df-br 3868  df-opab 3922  df-mpt 3923  df-tr 3959  df-eprel 4140  df-id 4144  df-po 4147  df-iso 4148  df-iord 4217  df-on 4219  df-suc 4222  df-iom 4434  df-xp 4473  df-rel 4474  df-cnv 4475  df-co 4476  df-dm 4477  df-rn 4478  df-res 4479  df-ima 4480  df-iota 5014  df-fun 5051  df-fn 5052  df-f 5053  df-f1 5054  df-fo 5055  df-f1o 5056  df-fv 5057  df-ov 5693  df-oprab 5694  df-mpt2 5695  df-1st 5949  df-2nd 5950  df-recs 6108  df-irdg 6173  df-oadd 6223  df-omul 6224  df-er 6332  df-ec 6334  df-qs 6338  df-ni 6960  df-mi 6962  df-lti 6963  df-enq 7003  df-nqqs 7004  df-ltnqqs 7009  df-inp 7122
This theorem is referenced by:  addclpr  7193  mulclpr  7228
  Copyright terms: Public domain W3C validator