ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genprndu GIF version

Theorem genprndu 7634
Description: The upper cut produced by addition or multiplication on positive reals is rounded. (Contributed by Jim Kingdon, 7-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
genpelvl.2 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
genprndu.ord ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
genprndu.com ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
genprndu.upper ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
Assertion
Ref Expression
genprndu ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞,𝐴   𝑥,𝐵,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞   𝑥,𝐺,𝑦,𝑧,𝑔,,𝑤,𝑣,𝑞   𝑔,𝐹,𝑞   𝐴,𝑟,𝑞,𝑣,𝑤,𝑥,𝑦,𝑧   𝐵,𝑟,𝑔,   ,𝐹,𝑟,𝑣,𝑤,𝑥,𝑦,𝑧   𝐺,𝑟

Proof of Theorem genprndu
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 genpelvl.1 . . . . . . . . . 10 𝐹 = (𝑤P, 𝑣P ↦ ⟨{𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (1st𝑤) ∧ 𝑧 ∈ (1st𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}, {𝑥Q ∣ ∃𝑦Q𝑧Q (𝑦 ∈ (2nd𝑤) ∧ 𝑧 ∈ (2nd𝑣) ∧ 𝑥 = (𝑦𝐺𝑧))}⟩)
2 genpelvl.2 . . . . . . . . . 10 ((𝑦Q𝑧Q) → (𝑦𝐺𝑧) ∈ Q)
31, 2genpelvu 7625 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑎 ∈ (2nd𝐴)∃𝑏 ∈ (2nd𝐵)𝑟 = (𝑎𝐺𝑏)))
4 r2ex 2525 . . . . . . . . 9 (∃𝑎 ∈ (2nd𝐴)∃𝑏 ∈ (2nd𝐵)𝑟 = (𝑎𝐺𝑏) ↔ ∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)))
53, 4bitrdi 196 . . . . . . . 8 ((𝐴P𝐵P) → (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏))))
65biimpa 296 . . . . . . 7 (((𝐴P𝐵P) ∧ 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))) → ∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)))
76adantrl 478 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)))
8 prop 7587 . . . . . . . . . . . . . . . 16 (𝐴P → ⟨(1st𝐴), (2nd𝐴)⟩ ∈ P)
9 prnminu 7601 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑎 ∈ (2nd𝐴)) → ∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎)
108, 9sylan 283 . . . . . . . . . . . . . . 15 ((𝐴P𝑎 ∈ (2nd𝐴)) → ∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎)
11 prop 7587 . . . . . . . . . . . . . . . 16 (𝐵P → ⟨(1st𝐵), (2nd𝐵)⟩ ∈ P)
12 prnminu 7601 . . . . . . . . . . . . . . . 16 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑏 ∈ (2nd𝐵)) → ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏)
1311, 12sylan 283 . . . . . . . . . . . . . . 15 ((𝐵P𝑏 ∈ (2nd𝐵)) → ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏)
1410, 13anim12i 338 . . . . . . . . . . . . . 14 (((𝐴P𝑎 ∈ (2nd𝐴)) ∧ (𝐵P𝑏 ∈ (2nd𝐵))) → (∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎 ∧ ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏))
1514an4s 588 . . . . . . . . . . . . 13 (((𝐴P𝐵P) ∧ (𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵))) → (∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎 ∧ ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏))
16 reeanv 2675 . . . . . . . . . . . . 13 (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐 <Q 𝑎𝑑 <Q 𝑏) ↔ (∃𝑐 ∈ (2nd𝐴)𝑐 <Q 𝑎 ∧ ∃𝑑 ∈ (2nd𝐵)𝑑 <Q 𝑏))
1715, 16sylibr 134 . . . . . . . . . . . 12 (((𝐴P𝐵P) ∧ (𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐 <Q 𝑎𝑑 <Q 𝑏))
18 genprndu.ord . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q𝑧Q) → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦)))
19 genprndu.com . . . . . . . . . . . . . . 15 ((𝑥Q𝑦Q) → (𝑥𝐺𝑦) = (𝑦𝐺𝑥))
2018, 19genplt2i 7622 . . . . . . . . . . . . . 14 ((𝑐 <Q 𝑎𝑑 <Q 𝑏) → (𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
2120reximi 2602 . . . . . . . . . . . . 13 (∃𝑑 ∈ (2nd𝐵)(𝑐 <Q 𝑎𝑑 <Q 𝑏) → ∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
2221reximi 2602 . . . . . . . . . . . 12 (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐 <Q 𝑎𝑑 <Q 𝑏) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
2317, 22syl 14 . . . . . . . . . . 11 (((𝐴P𝐵P) ∧ (𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
2423adantrr 479 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏))
25 breq2 4047 . . . . . . . . . . . . . 14 (𝑟 = (𝑎𝐺𝑏) → ((𝑐𝐺𝑑) <Q 𝑟 ↔ (𝑐𝐺𝑑) <Q (𝑎𝐺𝑏)))
2625biimprd 158 . . . . . . . . . . . . 13 (𝑟 = (𝑎𝐺𝑏) → ((𝑐𝐺𝑑) <Q (𝑎𝐺𝑏) → (𝑐𝐺𝑑) <Q 𝑟))
2726reximdv 2606 . . . . . . . . . . . 12 (𝑟 = (𝑎𝐺𝑏) → (∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏) → ∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
2827reximdv 2606 . . . . . . . . . . 11 (𝑟 = (𝑎𝐺𝑏) → (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
2928ad2antll 491 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏))) → (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q (𝑎𝐺𝑏) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
3024, 29mpd 13 . . . . . . . . 9 (((𝐴P𝐵P) ∧ ((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟)
3130ex 115 . . . . . . . 8 ((𝐴P𝐵P) → (((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
3231exlimdvv 1920 . . . . . . 7 ((𝐴P𝐵P) → (∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
3332adantr 276 . . . . . 6 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑎𝑏((𝑎 ∈ (2nd𝐴) ∧ 𝑏 ∈ (2nd𝐵)) ∧ 𝑟 = (𝑎𝐺𝑏)) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟))
347, 33mpd 13 . . . . 5 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟)
351, 2genppreclu 7627 . . . . . . . . 9 ((𝐴P𝐵P) → ((𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵)) → (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵))))
3635imp 124 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵)))
37 elprnqu 7594 . . . . . . . . . . . . 13 ((⟨(1st𝐴), (2nd𝐴)⟩ ∈ P𝑐 ∈ (2nd𝐴)) → 𝑐Q)
388, 37sylan 283 . . . . . . . . . . . 12 ((𝐴P𝑐 ∈ (2nd𝐴)) → 𝑐Q)
39 elprnqu 7594 . . . . . . . . . . . . 13 ((⟨(1st𝐵), (2nd𝐵)⟩ ∈ P𝑑 ∈ (2nd𝐵)) → 𝑑Q)
4011, 39sylan 283 . . . . . . . . . . . 12 ((𝐵P𝑑 ∈ (2nd𝐵)) → 𝑑Q)
4138, 40anim12i 338 . . . . . . . . . . 11 (((𝐴P𝑐 ∈ (2nd𝐴)) ∧ (𝐵P𝑑 ∈ (2nd𝐵))) → (𝑐Q𝑑Q))
4241an4s 588 . . . . . . . . . 10 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑐Q𝑑Q))
432caovcl 6100 . . . . . . . . . 10 ((𝑐Q𝑑Q) → (𝑐𝐺𝑑) ∈ Q)
4442, 43syl 14 . . . . . . . . 9 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (𝑐𝐺𝑑) ∈ Q)
45 breq1 4046 . . . . . . . . . . 11 (𝑞 = (𝑐𝐺𝑑) → (𝑞 <Q 𝑟 ↔ (𝑐𝐺𝑑) <Q 𝑟))
46 eleq1 2267 . . . . . . . . . . 11 (𝑞 = (𝑐𝐺𝑑) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵))))
4745, 46anbi12d 473 . . . . . . . . . 10 (𝑞 = (𝑐𝐺𝑑) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ((𝑐𝐺𝑑) <Q 𝑟 ∧ (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵)))))
4847adantl 277 . . . . . . . . 9 ((((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) ∧ 𝑞 = (𝑐𝐺𝑑)) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ((𝑐𝐺𝑑) <Q 𝑟 ∧ (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵)))))
4944, 48rspcedv 2880 . . . . . . . 8 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → (((𝑐𝐺𝑑) <Q 𝑟 ∧ (𝑐𝐺𝑑) ∈ (2nd ‘(𝐴𝐹𝐵))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5036, 49mpan2d 428 . . . . . . 7 (((𝐴P𝐵P) ∧ (𝑐 ∈ (2nd𝐴) ∧ 𝑑 ∈ (2nd𝐵))) → ((𝑐𝐺𝑑) <Q 𝑟 → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5150rexlimdvva 2630 . . . . . 6 ((𝐴P𝐵P) → (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟 → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5251adantr 276 . . . . 5 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → (∃𝑐 ∈ (2nd𝐴)∃𝑑 ∈ (2nd𝐵)(𝑐𝐺𝑑) <Q 𝑟 → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5334, 52mpd 13 . . . 4 (((𝐴P𝐵P) ∧ (𝑟Q𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))))
5453expr 375 . . 3 (((𝐴P𝐵P) ∧ 𝑟Q) → (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) → ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
55 genprndu.upper . . . . . . . . . . 11 ((((𝐴P𝑔 ∈ (2nd𝐴)) ∧ (𝐵P ∈ (2nd𝐵))) ∧ 𝑥Q) → ((𝑔𝐺) <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))))
561, 2, 55genpcuu 7632 . . . . . . . . . 10 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑞 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
5756alrimdv 1898 . . . . . . . . 9 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) → ∀𝑥(𝑞 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)))))
58 breq2 4047 . . . . . . . . . . 11 (𝑥 = 𝑟 → (𝑞 <Q 𝑥𝑞 <Q 𝑟))
59 eleq1 2267 . . . . . . . . . . 11 (𝑥 = 𝑟 → (𝑥 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6058, 59imbi12d 234 . . . . . . . . . 10 (𝑥 = 𝑟 → ((𝑞 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ (𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))))
6160cbvalv 1940 . . . . . . . . 9 (∀𝑥(𝑞 <Q 𝑥𝑥 ∈ (2nd ‘(𝐴𝐹𝐵))) ↔ ∀𝑟(𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6257, 61imbitrdi 161 . . . . . . . 8 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) → ∀𝑟(𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))))
63 sp 1533 . . . . . . . 8 (∀𝑟(𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))) → (𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6462, 63syl6 33 . . . . . . 7 ((𝐴P𝐵P) → (𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) → (𝑞 <Q 𝑟𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)))))
6564impd 254 . . . . . 6 ((𝐴P𝐵P) → ((𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)) ∧ 𝑞 <Q 𝑟) → 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6665ancomsd 269 . . . . 5 ((𝐴P𝐵P) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) → 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6766ad2antrr 488 . . . 4 ((((𝐴P𝐵P) ∧ 𝑟Q) ∧ 𝑞Q) → ((𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) → 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6867rexlimdva 2622 . . 3 (((𝐴P𝐵P) ∧ 𝑟Q) → (∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵))) → 𝑟 ∈ (2nd ‘(𝐴𝐹𝐵))))
6954, 68impbid 129 . 2 (((𝐴P𝐵P) ∧ 𝑟Q) → (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
7069ralrimiva 2578 1 ((𝐴P𝐵P) → ∀𝑟Q (𝑟 ∈ (2nd ‘(𝐴𝐹𝐵)) ↔ ∃𝑞Q (𝑞 <Q 𝑟𝑞 ∈ (2nd ‘(𝐴𝐹𝐵)))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1370   = wceq 1372  wex 1514  wcel 2175  wral 2483  wrex 2484  {crab 2487  cop 3635   class class class wbr 4043  cfv 5270  (class class class)co 5943  cmpo 5945  1st c1st 6223  2nd c2nd 6224  Qcnq 7392   <Q cltq 7397  Pcnp 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-mi 7418  df-lti 7419  df-enq 7459  df-nqqs 7460  df-ltnqqs 7465  df-inp 7578
This theorem is referenced by:  addclpr  7649  mulclpr  7684
  Copyright terms: Public domain W3C validator