ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  exmidsssnc GIF version

Theorem exmidsssnc 4246
Description: Excluded middle in terms of subsets of a singleton. This is similar to exmid01 4241 but lets you choose any set as the element of the singleton rather than just . It is similar to exmidsssn 4245 but for a particular set 𝐵 rather than all sets. (Contributed by Jim Kingdon, 29-Jul-2023.)
Assertion
Ref Expression
exmidsssnc (𝐵𝑉 → (EXMID ↔ ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑉

Proof of Theorem exmidsssnc
Dummy variables 𝑢 𝑤 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exmidsssn 4245 . . . 4 (EXMID ↔ ∀𝑥𝑢(𝑥 ⊆ {𝑢} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑢})))
2 sneq 3643 . . . . . . . 8 (𝑢 = 𝐵 → {𝑢} = {𝐵})
32sseq2d 3222 . . . . . . 7 (𝑢 = 𝐵 → (𝑥 ⊆ {𝑢} ↔ 𝑥 ⊆ {𝐵}))
42eqeq2d 2216 . . . . . . . 8 (𝑢 = 𝐵 → (𝑥 = {𝑢} ↔ 𝑥 = {𝐵}))
54orbi2d 791 . . . . . . 7 (𝑢 = 𝐵 → ((𝑥 = ∅ ∨ 𝑥 = {𝑢}) ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})))
63, 5bibi12d 235 . . . . . 6 (𝑢 = 𝐵 → ((𝑥 ⊆ {𝑢} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑢})) ↔ (𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
76spcgv 2859 . . . . 5 (𝐵𝑉 → (∀𝑢(𝑥 ⊆ {𝑢} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑢})) → (𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
87alimdv 1901 . . . 4 (𝐵𝑉 → (∀𝑥𝑢(𝑥 ⊆ {𝑢} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑢})) → ∀𝑥(𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
91, 8biimtrid 152 . . 3 (𝐵𝑉 → (EXMID → ∀𝑥(𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
10 biimp 118 . . . 4 ((𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → (𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})))
1110alimi 1477 . . 3 (∀𝑥(𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})))
129, 11syl6 33 . 2 (𝐵𝑉 → (EXMID → ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
13 ssrab2 3277 . . . . . . . . 9 {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵}
14 snexg 4227 . . . . . . . . . 10 (𝐵𝑉 → {𝐵} ∈ V)
15 rabexg 4186 . . . . . . . . . 10 ({𝐵} ∈ V → {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ∈ V)
16 sseq1 3215 . . . . . . . . . . . 12 (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → (𝑥 ⊆ {𝐵} ↔ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵}))
17 eqeq1 2211 . . . . . . . . . . . . 13 (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → (𝑥 = ∅ ↔ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅))
18 eqeq1 2211 . . . . . . . . . . . . 13 (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → (𝑥 = {𝐵} ↔ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}))
1917, 18orbi12d 794 . . . . . . . . . . . 12 (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → ((𝑥 = ∅ ∨ 𝑥 = {𝐵}) ↔ ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵})))
2016, 19imbi12d 234 . . . . . . . . . . 11 (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → ((𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) ↔ ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵} → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}))))
2120spcgv 2859 . . . . . . . . . 10 ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ∈ V → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵} → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}))))
2214, 15, 213syl 17 . . . . . . . . 9 (𝐵𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵} → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}))))
2313, 22mpii 44 . . . . . . . 8 (𝐵𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵})))
24 rabeq0 3489 . . . . . . . . . . 11 ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ ∅ ∈ 𝑦)
25 snmg 3750 . . . . . . . . . . . 12 (𝐵𝑉 → ∃𝑤 𝑤 ∈ {𝐵})
26 r19.3rmv 3550 . . . . . . . . . . . 12 (∃𝑤 𝑤 ∈ {𝐵} → (¬ ∅ ∈ 𝑦 ↔ ∀𝑧 ∈ {𝐵} ¬ ∅ ∈ 𝑦))
2725, 26syl 14 . . . . . . . . . . 11 (𝐵𝑉 → (¬ ∅ ∈ 𝑦 ↔ ∀𝑧 ∈ {𝐵} ¬ ∅ ∈ 𝑦))
2824, 27bitr4id 199 . . . . . . . . . 10 (𝐵𝑉 → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ↔ ¬ ∅ ∈ 𝑦))
2928biimpd 144 . . . . . . . . 9 (𝐵𝑉 → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ → ¬ ∅ ∈ 𝑦))
30 snidg 3661 . . . . . . . . . . . . 13 (𝐵𝑉𝐵 ∈ {𝐵})
3130adantr 276 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → 𝐵 ∈ {𝐵})
32 simpr 110 . . . . . . . . . . . 12 ((𝐵𝑉 ∧ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵})
3331, 32eleqtrrd 2284 . . . . . . . . . . 11 ((𝐵𝑉 ∧ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → 𝐵 ∈ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦})
34 biidd 172 . . . . . . . . . . . . 13 (𝑧 = 𝐵 → (∅ ∈ 𝑦 ↔ ∅ ∈ 𝑦))
3534elrab 2928 . . . . . . . . . . . 12 (𝐵 ∈ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ↔ (𝐵 ∈ {𝐵} ∧ ∅ ∈ 𝑦))
3635simprbi 275 . . . . . . . . . . 11 (𝐵 ∈ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → ∅ ∈ 𝑦)
3733, 36syl 14 . . . . . . . . . 10 ((𝐵𝑉 ∧ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → ∅ ∈ 𝑦)
3837ex 115 . . . . . . . . 9 (𝐵𝑉 → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵} → ∅ ∈ 𝑦))
3929, 38orim12d 787 . . . . . . . 8 (𝐵𝑉 → (({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → (¬ ∅ ∈ 𝑦 ∨ ∅ ∈ 𝑦)))
4023, 39syld 45 . . . . . . 7 (𝐵𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → (¬ ∅ ∈ 𝑦 ∨ ∅ ∈ 𝑦)))
41 orcom 729 . . . . . . 7 ((¬ ∅ ∈ 𝑦 ∨ ∅ ∈ 𝑦) ↔ (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦))
4240, 41imbitrdi 161 . . . . . 6 (𝐵𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦)))
43 df-dc 836 . . . . . 6 (DECID ∅ ∈ 𝑦 ↔ (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦))
4442, 43imbitrrdi 162 . . . . 5 (𝐵𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → DECID ∅ ∈ 𝑦))
4544a1dd 48 . . . 4 (𝐵𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → (𝑦 ⊆ {∅} → DECID ∅ ∈ 𝑦)))
4645alrimdv 1898 . . 3 (𝐵𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ∀𝑦(𝑦 ⊆ {∅} → DECID ∅ ∈ 𝑦)))
47 df-exmid 4238 . . 3 (EXMID ↔ ∀𝑦(𝑦 ⊆ {∅} → DECID ∅ ∈ 𝑦))
4846, 47imbitrrdi 162 . 2 (𝐵𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → EXMID))
4912, 48impbid 129 1 (𝐵𝑉 → (EXMID ↔ ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵}))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 709  DECID wdc 835  wal 1370   = wceq 1372  wex 1514  wcel 2175  wral 2483  {crab 2487  Vcvv 2771  wss 3165  c0 3459  {csn 3632  EXMIDwem 4237
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217
This theorem depends on definitions:  df-bi 117  df-dc 836  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rab 2492  df-v 2773  df-dif 3167  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-exmid 4238
This theorem is referenced by:  exmidunben  12739
  Copyright terms: Public domain W3C validator