Step | Hyp | Ref
| Expression |
1 | | exmidsssn 4181 |
. . . 4
⊢
(EXMID ↔ ∀𝑥∀𝑢(𝑥 ⊆ {𝑢} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑢}))) |
2 | | sneq 3587 |
. . . . . . . 8
⊢ (𝑢 = 𝐵 → {𝑢} = {𝐵}) |
3 | 2 | sseq2d 3172 |
. . . . . . 7
⊢ (𝑢 = 𝐵 → (𝑥 ⊆ {𝑢} ↔ 𝑥 ⊆ {𝐵})) |
4 | 2 | eqeq2d 2177 |
. . . . . . . 8
⊢ (𝑢 = 𝐵 → (𝑥 = {𝑢} ↔ 𝑥 = {𝐵})) |
5 | 4 | orbi2d 780 |
. . . . . . 7
⊢ (𝑢 = 𝐵 → ((𝑥 = ∅ ∨ 𝑥 = {𝑢}) ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵}))) |
6 | 3, 5 | bibi12d 234 |
. . . . . 6
⊢ (𝑢 = 𝐵 → ((𝑥 ⊆ {𝑢} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑢})) ↔ (𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) |
7 | 6 | spcgv 2813 |
. . . . 5
⊢ (𝐵 ∈ 𝑉 → (∀𝑢(𝑥 ⊆ {𝑢} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑢})) → (𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) |
8 | 7 | alimdv 1867 |
. . . 4
⊢ (𝐵 ∈ 𝑉 → (∀𝑥∀𝑢(𝑥 ⊆ {𝑢} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝑢})) → ∀𝑥(𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) |
9 | 1, 8 | syl5bi 151 |
. . 3
⊢ (𝐵 ∈ 𝑉 → (EXMID →
∀𝑥(𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) |
10 | | biimp 117 |
. . . 4
⊢ ((𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → (𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵}))) |
11 | 10 | alimi 1443 |
. . 3
⊢
(∀𝑥(𝑥 ⊆ {𝐵} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵}))) |
12 | 9, 11 | syl6 33 |
. 2
⊢ (𝐵 ∈ 𝑉 → (EXMID →
∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) |
13 | | ssrab2 3227 |
. . . . . . . . 9
⊢ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵} |
14 | | snexg 4163 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑉 → {𝐵} ∈ V) |
15 | | rabexg 4125 |
. . . . . . . . . 10
⊢ ({𝐵} ∈ V → {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ∈ V) |
16 | | sseq1 3165 |
. . . . . . . . . . . 12
⊢ (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → (𝑥 ⊆ {𝐵} ↔ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵})) |
17 | | eqeq1 2172 |
. . . . . . . . . . . . 13
⊢ (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → (𝑥 = ∅ ↔ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅)) |
18 | | eqeq1 2172 |
. . . . . . . . . . . . 13
⊢ (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → (𝑥 = {𝐵} ↔ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵})) |
19 | 17, 18 | orbi12d 783 |
. . . . . . . . . . . 12
⊢ (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → ((𝑥 = ∅ ∨ 𝑥 = {𝐵}) ↔ ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}))) |
20 | 16, 19 | imbi12d 233 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → ((𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) ↔ ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵} → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵})))) |
21 | 20 | spcgv 2813 |
. . . . . . . . . 10
⊢ ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ∈ V → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵} → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵})))) |
22 | 14, 15, 21 | 3syl 17 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ⊆ {𝐵} → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵})))) |
23 | 13, 22 | mpii 44 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}))) |
24 | | rabeq0 3438 |
. . . . . . . . . . 11
⊢ ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ↔ ∀𝑧 ∈ {𝐵} ¬ ∅ ∈ 𝑦) |
25 | | snmg 3694 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ 𝑉 → ∃𝑤 𝑤 ∈ {𝐵}) |
26 | | r19.3rmv 3499 |
. . . . . . . . . . . 12
⊢
(∃𝑤 𝑤 ∈ {𝐵} → (¬ ∅ ∈ 𝑦 ↔ ∀𝑧 ∈ {𝐵} ¬ ∅ ∈ 𝑦)) |
27 | 25, 26 | syl 14 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ 𝑉 → (¬ ∅ ∈ 𝑦 ↔ ∀𝑧 ∈ {𝐵} ¬ ∅ ∈ 𝑦)) |
28 | 24, 27 | bitr4id 198 |
. . . . . . . . . 10
⊢ (𝐵 ∈ 𝑉 → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ↔ ¬ ∅ ∈ 𝑦)) |
29 | 28 | biimpd 143 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑉 → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ → ¬ ∅ ∈ 𝑦)) |
30 | | snidg 3605 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ 𝑉 → 𝐵 ∈ {𝐵}) |
31 | 30 | adantr 274 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → 𝐵 ∈ {𝐵}) |
32 | | simpr 109 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ 𝑉 ∧ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) |
33 | 31, 32 | eleqtrrd 2246 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ 𝑉 ∧ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → 𝐵 ∈ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦}) |
34 | | biidd 171 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝐵 → (∅ ∈ 𝑦 ↔ ∅ ∈ 𝑦)) |
35 | 34 | elrab 2882 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} ↔ (𝐵 ∈ {𝐵} ∧ ∅ ∈ 𝑦)) |
36 | 35 | simprbi 273 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} → ∅ ∈ 𝑦) |
37 | 33, 36 | syl 14 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ 𝑉 ∧ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → ∅ ∈ 𝑦) |
38 | 37 | ex 114 |
. . . . . . . . 9
⊢ (𝐵 ∈ 𝑉 → ({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵} → ∅ ∈ 𝑦)) |
39 | 29, 38 | orim12d 776 |
. . . . . . . 8
⊢ (𝐵 ∈ 𝑉 → (({𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = ∅ ∨ {𝑧 ∈ {𝐵} ∣ ∅ ∈ 𝑦} = {𝐵}) → (¬ ∅ ∈ 𝑦 ∨ ∅ ∈ 𝑦))) |
40 | 23, 39 | syld 45 |
. . . . . . 7
⊢ (𝐵 ∈ 𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → (¬ ∅ ∈ 𝑦 ∨ ∅ ∈ 𝑦))) |
41 | | orcom 718 |
. . . . . . 7
⊢ ((¬
∅ ∈ 𝑦 ∨
∅ ∈ 𝑦) ↔
(∅ ∈ 𝑦 ∨
¬ ∅ ∈ 𝑦)) |
42 | 40, 41 | syl6ib 160 |
. . . . . 6
⊢ (𝐵 ∈ 𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦))) |
43 | | df-dc 825 |
. . . . . 6
⊢
(DECID ∅ ∈ 𝑦 ↔ (∅ ∈ 𝑦 ∨ ¬ ∅ ∈ 𝑦)) |
44 | 42, 43 | syl6ibr 161 |
. . . . 5
⊢ (𝐵 ∈ 𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → DECID ∅
∈ 𝑦)) |
45 | 44 | a1dd 48 |
. . . 4
⊢ (𝐵 ∈ 𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → (𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦))) |
46 | 45 | alrimdv 1864 |
. . 3
⊢ (𝐵 ∈ 𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) → ∀𝑦(𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦))) |
47 | | df-exmid 4174 |
. . 3
⊢
(EXMID ↔ ∀𝑦(𝑦 ⊆ {∅} →
DECID ∅ ∈ 𝑦)) |
48 | 46, 47 | syl6ibr 161 |
. 2
⊢ (𝐵 ∈ 𝑉 → (∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})) →
EXMID)) |
49 | 12, 48 | impbid 128 |
1
⊢ (𝐵 ∈ 𝑉 → (EXMID ↔
∀𝑥(𝑥 ⊆ {𝐵} → (𝑥 = ∅ ∨ 𝑥 = {𝐵})))) |