ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iun GIF version

Definition df-iun 3873
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥𝐴 is written as a subscript or underneath a union symbol . We use a special union symbol to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same disjoint variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a disjoint variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 3905. Theorem uniiun 3924 provides a definition of ordinary union in terms of indexed union. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iun 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iun
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciun 3871 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1347 . . . . 5 class 𝑦
76, 3wcel 2141 . . . 4 wff 𝑦𝐵
87, 1, 2wrex 2449 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2156 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
104, 9wceq 1348 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliun  3875  nfiunxy  3897  nfiunya  3899  nfiu1  3901  dfiunv2  3907  cbviun  3908  iunss  3912  uniiun  3924  iunopab  4264  opeliunxp  4664  reliun  4730  fnasrn  5671  fnasrng  5673  abrexex2g  6096  abrexex2  6100  bdciun  13873
  Copyright terms: Public domain W3C validator