ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iun GIF version

Definition df-iun 3935
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥𝐴 is written as a subscript or underneath a union symbol . We use a special union symbol to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same disjoint variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a disjoint variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 3967. Theorem uniiun 3987 provides a definition of ordinary union in terms of indexed union. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iun 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iun
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciun 3933 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1372 . . . . 5 class 𝑦
76, 3wcel 2177 . . . 4 wff 𝑦𝐵
87, 1, 2wrex 2486 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2192 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
104, 9wceq 1373 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliun  3937  nfiunxy  3959  nfiunya  3961  nfiu1  3963  dfiunv2  3969  cbviun  3970  iunss  3974  uniiun  3987  iunopab  4336  opeliunxp  4738  reliun  4804  fnasrn  5771  fnasrng  5773  abrexex2g  6218  abrexex2  6222  bdciun  15952
  Copyright terms: Public domain W3C validator