ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  df-iun GIF version

Definition df-iun 3868
Description: Define indexed union. Definition indexed union in [Stoll] p. 45. In most applications, 𝐴 is independent of 𝑥 (although this is not required by the definition), and 𝐵 depends on 𝑥 i.e. can be read informally as 𝐵(𝑥). We call 𝑥 the index, 𝐴 the index set, and 𝐵 the indexed set. In most books, 𝑥𝐴 is written as a subscript or underneath a union symbol . We use a special union symbol to make it easier to distinguish from plain class union. In many theorems, you will see that 𝑥 and 𝐴 are in the same disjoint variable group (meaning 𝐴 cannot depend on 𝑥) and that 𝐵 and 𝑥 do not share a disjoint variable group (meaning that can be thought of as 𝐵(𝑥) i.e. can be substituted with a class expression containing 𝑥). An alternate definition tying indexed union to ordinary union is dfiun2 3900. Theorem uniiun 3919 provides a definition of ordinary union in terms of indexed union. (Contributed by NM, 27-Jun-1998.)
Assertion
Ref Expression
df-iun 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Detailed syntax breakdown of Definition df-iun
StepHypRef Expression
1 vx . . 3 setvar 𝑥
2 cA . . 3 class 𝐴
3 cB . . 3 class 𝐵
41, 2, 3ciun 3866 . 2 class 𝑥𝐴 𝐵
5 vy . . . . . 6 setvar 𝑦
65cv 1342 . . . . 5 class 𝑦
76, 3wcel 2136 . . . 4 wff 𝑦𝐵
87, 1, 2wrex 2445 . . 3 wff 𝑥𝐴 𝑦𝐵
98, 5cab 2151 . 2 class {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
104, 9wceq 1343 1 wff 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦𝐵}
Colors of variables: wff set class
This definition is referenced by:  eliun  3870  nfiunxy  3892  nfiunya  3894  nfiu1  3896  dfiunv2  3902  cbviun  3903  iunss  3907  uniiun  3919  iunopab  4259  opeliunxp  4659  reliun  4725  fnasrn  5663  fnasrng  5665  abrexex2g  6088  abrexex2  6092  bdciun  13760
  Copyright terms: Public domain W3C validator