| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-pr | GIF version | ||
| Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3742. For a more traditional definition, but requiring a dummy variable, see dfpr2 3685. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cpr 3667 | . 2 class {𝐴, 𝐵} |
| 4 | 1 | csn 3666 | . . 3 class {𝐴} |
| 5 | 2 | csn 3666 | . . 3 class {𝐵} |
| 6 | 4, 5 | cun 3195 | . 2 class ({𝐴} ∪ {𝐵}) |
| 7 | 3, 6 | wceq 1395 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| Colors of variables: wff set class |
| This definition is referenced by: dfsn2 3680 dfpr2 3685 ralprg 3717 rexprg 3718 disjpr2 3730 prcom 3742 preq1 3743 qdass 3763 qdassr 3764 tpidm12 3765 prprc1 3774 difprsn1 3806 diftpsn3 3808 difpr 3809 snsspr1 3815 snsspr2 3816 prss 3823 prssg 3824 iunxprg 4045 2ordpr 4615 xpsspw 4830 dmpropg 5200 rnpropg 5207 funprg 5370 funtp 5373 fntpg 5376 f1oprg 5616 fnimapr 5693 fpr 5820 fprg 5821 fmptpr 5830 fvpr1 5842 fvpr1g 5844 fvpr2g 5845 df2o3 6574 enpr2d 6970 unfiexmid 7076 prfidisj 7085 tpfidceq 7088 pr2nelem 7360 xp2dju 7393 fzosplitprm1 10435 hashprg 11025 sumpr 11919 strle2g 13135 perfectlem2 15668 bdcpr 16192 |
| Copyright terms: Public domain | W3C validator |