![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-pr | GIF version |
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3695. For a more traditional definition, but requiring a dummy variable, see dfpr2 3638. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cpr 3620 | . 2 class {𝐴, 𝐵} |
4 | 1 | csn 3619 | . . 3 class {𝐴} |
5 | 2 | csn 3619 | . . 3 class {𝐵} |
6 | 4, 5 | cun 3152 | . 2 class ({𝐴} ∪ {𝐵}) |
7 | 3, 6 | wceq 1364 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Colors of variables: wff set class |
This definition is referenced by: dfsn2 3633 dfpr2 3638 ralprg 3670 rexprg 3671 disjpr2 3683 prcom 3695 preq1 3696 qdass 3716 qdassr 3717 tpidm12 3718 prprc1 3727 difprsn1 3758 diftpsn3 3760 difpr 3761 snsspr1 3767 snsspr2 3768 prss 3775 prssg 3776 iunxprg 3994 2ordpr 4557 xpsspw 4772 dmpropg 5139 rnpropg 5146 funprg 5305 funtp 5308 fntpg 5311 f1oprg 5545 fnimapr 5618 fpr 5741 fprg 5742 fmptpr 5751 fvpr1 5763 fvpr1g 5765 fvpr2g 5766 df2o3 6485 enpr2d 6873 unfiexmid 6976 prfidisj 6985 pr2nelem 7253 xp2dju 7277 fzosplitprm1 10304 hashprg 10882 sumpr 11559 strle2g 12728 bdcpr 15433 |
Copyright terms: Public domain | W3C validator |