![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > df-pr | GIF version |
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3668. For a more traditional definition, but requiring a dummy variable, see dfpr2 3611. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cpr 3593 | . 2 class {𝐴, 𝐵} |
4 | 1 | csn 3592 | . . 3 class {𝐴} |
5 | 2 | csn 3592 | . . 3 class {𝐵} |
6 | 4, 5 | cun 3127 | . 2 class ({𝐴} ∪ {𝐵}) |
7 | 3, 6 | wceq 1353 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Colors of variables: wff set class |
This definition is referenced by: dfsn2 3606 dfpr2 3611 ralprg 3643 rexprg 3644 disjpr2 3656 prcom 3668 preq1 3669 qdass 3689 qdassr 3690 tpidm12 3691 prprc1 3700 difprsn1 3731 diftpsn3 3733 difpr 3734 snsspr1 3740 snsspr2 3741 prss 3748 prssg 3749 iunxprg 3967 2ordpr 4523 xpsspw 4738 dmpropg 5101 rnpropg 5108 funprg 5266 funtp 5269 fntpg 5272 f1oprg 5505 fnimapr 5576 fpr 5698 fprg 5699 fmptpr 5708 fvpr1 5720 fvpr1g 5722 fvpr2g 5723 df2o3 6430 enpr2d 6816 unfiexmid 6916 prfidisj 6925 pr2nelem 7189 xp2dju 7213 fzosplitprm1 10233 hashprg 10787 sumpr 11420 strle2g 12565 bdcpr 14593 |
Copyright terms: Public domain | W3C validator |