Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-pr | GIF version |
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3652. For a more traditional definition, but requiring a dummy variable, see dfpr2 3595. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cpr 3577 | . 2 class {𝐴, 𝐵} |
4 | 1 | csn 3576 | . . 3 class {𝐴} |
5 | 2 | csn 3576 | . . 3 class {𝐵} |
6 | 4, 5 | cun 3114 | . 2 class ({𝐴} ∪ {𝐵}) |
7 | 3, 6 | wceq 1343 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Colors of variables: wff set class |
This definition is referenced by: dfsn2 3590 dfpr2 3595 ralprg 3627 rexprg 3628 disjpr2 3640 prcom 3652 preq1 3653 qdass 3673 qdassr 3674 tpidm12 3675 prprc1 3684 difprsn1 3712 diftpsn3 3714 difpr 3715 snsspr1 3721 snsspr2 3722 prss 3729 prssg 3730 iunxprg 3946 2ordpr 4501 xpsspw 4716 dmpropg 5076 rnpropg 5083 funprg 5238 funtp 5241 fntpg 5244 f1oprg 5476 fnimapr 5546 fpr 5667 fprg 5668 fmptpr 5677 fvpr1 5689 fvpr1g 5691 fvpr2g 5692 df2o3 6398 enpr2d 6783 unfiexmid 6883 prfidisj 6892 pr2nelem 7147 xp2dju 7171 fzosplitprm1 10169 hashprg 10721 sumpr 11354 strle2g 12486 bdcpr 13753 |
Copyright terms: Public domain | W3C validator |