| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-pr | GIF version | ||
| Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3708. For a more traditional definition, but requiring a dummy variable, see dfpr2 3651. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cpr 3633 | . 2 class {𝐴, 𝐵} |
| 4 | 1 | csn 3632 | . . 3 class {𝐴} |
| 5 | 2 | csn 3632 | . . 3 class {𝐵} |
| 6 | 4, 5 | cun 3163 | . 2 class ({𝐴} ∪ {𝐵}) |
| 7 | 3, 6 | wceq 1372 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| Colors of variables: wff set class |
| This definition is referenced by: dfsn2 3646 dfpr2 3651 ralprg 3683 rexprg 3684 disjpr2 3696 prcom 3708 preq1 3709 qdass 3729 qdassr 3730 tpidm12 3731 prprc1 3740 difprsn1 3771 diftpsn3 3773 difpr 3774 snsspr1 3780 snsspr2 3781 prss 3788 prssg 3789 iunxprg 4007 2ordpr 4571 xpsspw 4786 dmpropg 5154 rnpropg 5161 funprg 5323 funtp 5326 fntpg 5329 f1oprg 5565 fnimapr 5638 fpr 5765 fprg 5766 fmptpr 5775 fvpr1 5787 fvpr1g 5789 fvpr2g 5790 df2o3 6515 enpr2d 6910 unfiexmid 7014 prfidisj 7023 tpfidceq 7026 pr2nelem 7298 xp2dju 7326 fzosplitprm1 10361 hashprg 10951 sumpr 11695 strle2g 12910 perfectlem2 15443 bdcpr 15769 |
| Copyright terms: Public domain | W3C validator |