| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-pr | GIF version | ||
| Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3719. For a more traditional definition, but requiring a dummy variable, see dfpr2 3662. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cpr 3644 | . 2 class {𝐴, 𝐵} |
| 4 | 1 | csn 3643 | . . 3 class {𝐴} |
| 5 | 2 | csn 3643 | . . 3 class {𝐵} |
| 6 | 4, 5 | cun 3172 | . 2 class ({𝐴} ∪ {𝐵}) |
| 7 | 3, 6 | wceq 1373 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| Colors of variables: wff set class |
| This definition is referenced by: dfsn2 3657 dfpr2 3662 ralprg 3694 rexprg 3695 disjpr2 3707 prcom 3719 preq1 3720 qdass 3740 qdassr 3741 tpidm12 3742 prprc1 3751 difprsn1 3783 diftpsn3 3785 difpr 3786 snsspr1 3792 snsspr2 3793 prss 3800 prssg 3801 iunxprg 4022 2ordpr 4590 xpsspw 4805 dmpropg 5174 rnpropg 5181 funprg 5343 funtp 5346 fntpg 5349 f1oprg 5589 fnimapr 5662 fpr 5789 fprg 5790 fmptpr 5799 fvpr1 5811 fvpr1g 5813 fvpr2g 5814 df2o3 6539 enpr2d 6935 unfiexmid 7041 prfidisj 7050 tpfidceq 7053 pr2nelem 7325 xp2dju 7358 fzosplitprm1 10400 hashprg 10990 sumpr 11839 strle2g 13054 perfectlem2 15587 bdcpr 16006 |
| Copyright terms: Public domain | W3C validator |