| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > df-pr | GIF version | ||
| Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3709. For a more traditional definition, but requiring a dummy variable, see dfpr2 3652. (Contributed by NM, 5-Aug-1993.) |
| Ref | Expression |
|---|---|
| df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cpr 3634 | . 2 class {𝐴, 𝐵} |
| 4 | 1 | csn 3633 | . . 3 class {𝐴} |
| 5 | 2 | csn 3633 | . . 3 class {𝐵} |
| 6 | 4, 5 | cun 3164 | . 2 class ({𝐴} ∪ {𝐵}) |
| 7 | 3, 6 | wceq 1373 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
| Colors of variables: wff set class |
| This definition is referenced by: dfsn2 3647 dfpr2 3652 ralprg 3684 rexprg 3685 disjpr2 3697 prcom 3709 preq1 3710 qdass 3730 qdassr 3731 tpidm12 3732 prprc1 3741 difprsn1 3772 diftpsn3 3774 difpr 3775 snsspr1 3781 snsspr2 3782 prss 3789 prssg 3790 iunxprg 4008 2ordpr 4572 xpsspw 4787 dmpropg 5155 rnpropg 5162 funprg 5324 funtp 5327 fntpg 5330 f1oprg 5566 fnimapr 5639 fpr 5766 fprg 5767 fmptpr 5776 fvpr1 5788 fvpr1g 5790 fvpr2g 5791 df2o3 6516 enpr2d 6911 unfiexmid 7015 prfidisj 7024 tpfidceq 7027 pr2nelem 7299 xp2dju 7327 fzosplitprm1 10363 hashprg 10953 sumpr 11724 strle2g 12939 perfectlem2 15472 bdcpr 15807 |
| Copyright terms: Public domain | W3C validator |