| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > df-pr | GIF version | ||
| Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3698. For a more traditional definition, but requiring a dummy variable, see dfpr2 3641. (Contributed by NM, 5-Aug-1993.) | 
| Ref | Expression | 
|---|---|
| df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | cB | . . 3 class 𝐵 | |
| 3 | 1, 2 | cpr 3623 | . 2 class {𝐴, 𝐵} | 
| 4 | 1 | csn 3622 | . . 3 class {𝐴} | 
| 5 | 2 | csn 3622 | . . 3 class {𝐵} | 
| 6 | 4, 5 | cun 3155 | . 2 class ({𝐴} ∪ {𝐵}) | 
| 7 | 3, 6 | wceq 1364 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | 
| Colors of variables: wff set class | 
| This definition is referenced by: dfsn2 3636 dfpr2 3641 ralprg 3673 rexprg 3674 disjpr2 3686 prcom 3698 preq1 3699 qdass 3719 qdassr 3720 tpidm12 3721 prprc1 3730 difprsn1 3761 diftpsn3 3763 difpr 3764 snsspr1 3770 snsspr2 3771 prss 3778 prssg 3779 iunxprg 3997 2ordpr 4560 xpsspw 4775 dmpropg 5142 rnpropg 5149 funprg 5308 funtp 5311 fntpg 5314 f1oprg 5548 fnimapr 5621 fpr 5744 fprg 5745 fmptpr 5754 fvpr1 5766 fvpr1g 5768 fvpr2g 5769 df2o3 6488 enpr2d 6876 unfiexmid 6979 prfidisj 6988 tpfidceq 6991 pr2nelem 7258 xp2dju 7282 fzosplitprm1 10310 hashprg 10900 sumpr 11578 strle2g 12785 perfectlem2 15236 bdcpr 15517 | 
| Copyright terms: Public domain | W3C validator |