Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > df-pr | GIF version |
Description: Define unordered pair of classes. Definition 7.1 of [Quine] p. 48. They are unordered, so {𝐴, 𝐵} = {𝐵, 𝐴} as proven by prcom 3660. For a more traditional definition, but requiring a dummy variable, see dfpr2 3603. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
df-pr | ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cA | . . 3 class 𝐴 | |
2 | cB | . . 3 class 𝐵 | |
3 | 1, 2 | cpr 3585 | . 2 class {𝐴, 𝐵} |
4 | 1 | csn 3584 | . . 3 class {𝐴} |
5 | 2 | csn 3584 | . . 3 class {𝐵} |
6 | 4, 5 | cun 3120 | . 2 class ({𝐴} ∪ {𝐵}) |
7 | 3, 6 | wceq 1349 | 1 wff {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) |
Colors of variables: wff set class |
This definition is referenced by: dfsn2 3598 dfpr2 3603 ralprg 3635 rexprg 3636 disjpr2 3648 prcom 3660 preq1 3661 qdass 3681 qdassr 3682 tpidm12 3683 prprc1 3692 difprsn1 3720 diftpsn3 3722 difpr 3723 snsspr1 3729 snsspr2 3730 prss 3737 prssg 3738 iunxprg 3954 2ordpr 4509 xpsspw 4724 dmpropg 5085 rnpropg 5092 funprg 5250 funtp 5253 fntpg 5256 f1oprg 5489 fnimapr 5560 fpr 5682 fprg 5683 fmptpr 5692 fvpr1 5704 fvpr1g 5706 fvpr2g 5707 df2o3 6413 enpr2d 6799 unfiexmid 6899 prfidisj 6908 pr2nelem 7172 xp2dju 7196 fzosplitprm1 10194 hashprg 10747 sumpr 11380 strle2g 12513 bdcpr 14023 |
Copyright terms: Public domain | W3C validator |