![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vn | GIF version |
Description: A sufficient condition for ω to be a set. See bj-inf2vn2 15537 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vn.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bj-inf2vn | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem1 15532 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → Ind 𝐴) | |
2 | biimp 118 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) | |
3 | 2 | alimi 1466 | . . . . . 6 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) |
4 | df-ral 2477 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) | |
5 | 3, 4 | sylibr 134 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) |
6 | bj-inf2vn.1 | . . . . . 6 ⊢ BOUNDED 𝐴 | |
7 | bdcv 15410 | . . . . . 6 ⊢ BOUNDED 𝑧 | |
8 | 6, 7 | bj-inf2vnlem3 15534 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
9 | 5, 8 | syl 14 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
10 | 9 | alrimiv 1885 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
11 | 1, 10 | jca 306 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧))) |
12 | bj-om 15499 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧)))) | |
13 | 11, 12 | imbitrrid 156 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 709 ∀wal 1362 = wceq 1364 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3154 ∅c0 3447 suc csuc 4397 ωcom 4623 BOUNDED wbdc 15402 Ind wind 15488 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-nul 4156 ax-pr 4239 ax-un 4465 ax-bd0 15375 ax-bdim 15376 ax-bdor 15378 ax-bdex 15381 ax-bdeq 15382 ax-bdel 15383 ax-bdsb 15384 ax-bdsep 15446 ax-bdsetind 15530 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-nul 3448 df-sn 3625 df-pr 3626 df-uni 3837 df-int 3872 df-suc 4403 df-iom 4624 df-bdc 15403 df-bj-ind 15489 |
This theorem is referenced by: bj-omex2 15539 bj-nn0sucALT 15540 |
Copyright terms: Public domain | W3C validator |