Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vn | GIF version |
Description: A sufficient condition for ω to be a set. See bj-inf2vn2 14010 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-inf2vn.1 | ⊢ BOUNDED 𝐴 |
Ref | Expression |
---|---|
bj-inf2vn | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-inf2vnlem1 14005 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → Ind 𝐴) | |
2 | biimp 117 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) | |
3 | 2 | alimi 1448 | . . . . . 6 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) |
4 | df-ral 2453 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) | |
5 | 3, 4 | sylibr 133 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) |
6 | bj-inf2vn.1 | . . . . . 6 ⊢ BOUNDED 𝐴 | |
7 | bdcv 13883 | . . . . . 6 ⊢ BOUNDED 𝑧 | |
8 | 6, 7 | bj-inf2vnlem3 14007 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
9 | 5, 8 | syl 14 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
10 | 9 | alrimiv 1867 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
11 | 1, 10 | jca 304 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧))) |
12 | bj-om 13972 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧)))) | |
13 | 11, 12 | syl5ibr 155 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∨ wo 703 ∀wal 1346 = wceq 1348 ∈ wcel 2141 ∀wral 2448 ∃wrex 2449 ⊆ wss 3121 ∅c0 3414 suc csuc 4350 ωcom 4574 BOUNDED wbdc 13875 Ind wind 13961 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-nul 4115 ax-pr 4194 ax-un 4418 ax-bd0 13848 ax-bdim 13849 ax-bdor 13851 ax-bdex 13854 ax-bdeq 13855 ax-bdel 13856 ax-bdsb 13857 ax-bdsep 13919 ax-bdsetind 14003 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 df-bdc 13876 df-bj-ind 13962 |
This theorem is referenced by: bj-omex2 14012 bj-nn0sucALT 14013 |
Copyright terms: Public domain | W3C validator |