Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inf2vn GIF version

Theorem bj-inf2vn 15620
Description: A sufficient condition for ω to be a set. See bj-inf2vn2 15621 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.)
Hypothesis
Ref Expression
bj-inf2vn.1 BOUNDED 𝐴
Assertion
Ref Expression
bj-inf2vn (𝐴𝑉 → (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω))
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem bj-inf2vn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 bj-inf2vnlem1 15616 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → Ind 𝐴)
2 biimp 118 . . . . . . 7 ((𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
32alimi 1469 . . . . . 6 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
4 df-ral 2480 . . . . . 6 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)))
53, 4sylibr 134 . . . . 5 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦))
6 bj-inf2vn.1 . . . . . 6 BOUNDED 𝐴
7 bdcv 15494 . . . . . 6 BOUNDED 𝑧
86, 7bj-inf2vnlem3 15618 . . . . 5 (∀𝑥𝐴 (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦) → (Ind 𝑧𝐴𝑧))
95, 8syl 14 . . . 4 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (Ind 𝑧𝐴𝑧))
109alrimiv 1888 . . 3 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → ∀𝑧(Ind 𝑧𝐴𝑧))
111, 10jca 306 . 2 (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧𝐴𝑧)))
12 bj-om 15583 . 2 (𝐴𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧𝐴𝑧))))
1311, 12imbitrrid 156 1 (𝐴𝑉 → (∀𝑥(𝑥𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  wal 1362   = wceq 1364  wcel 2167  wral 2475  wrex 2476  wss 3157  c0 3450  suc csuc 4400  ωcom 4626  BOUNDED wbdc 15486  Ind wind 15572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-nul 4159  ax-pr 4242  ax-un 4468  ax-bd0 15459  ax-bdim 15460  ax-bdor 15462  ax-bdex 15465  ax-bdeq 15466  ax-bdel 15467  ax-bdsb 15468  ax-bdsep 15530  ax-bdsetind 15614
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-sn 3628  df-pr 3629  df-uni 3840  df-int 3875  df-suc 4406  df-iom 4627  df-bdc 15487  df-bj-ind 15573
This theorem is referenced by:  bj-omex2  15623  bj-nn0sucALT  15624
  Copyright terms: Public domain W3C validator