| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-inf2vn | GIF version | ||
| Description: A sufficient condition for ω to be a set. See bj-inf2vn2 16338 for the unbounded version from full set induction. (Contributed by BJ, 8-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-inf2vn.1 | ⊢ BOUNDED 𝐴 |
| Ref | Expression |
|---|---|
| bj-inf2vn | ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-inf2vnlem1 16333 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → Ind 𝐴) | |
| 2 | biimp 118 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) | |
| 3 | 2 | alimi 1501 | . . . . . 6 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) |
| 4 | df-ral 2513 | . . . . . 6 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦))) | |
| 5 | 3, 4 | sylibr 134 | . . . . 5 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) |
| 6 | bj-inf2vn.1 | . . . . . 6 ⊢ BOUNDED 𝐴 | |
| 7 | bdcv 16211 | . . . . . 6 ⊢ BOUNDED 𝑧 | |
| 8 | 6, 7 | bj-inf2vnlem3 16335 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦) → (Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
| 9 | 5, 8 | syl 14 | . . . 4 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
| 10 | 9 | alrimiv 1920 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧)) |
| 11 | 1, 10 | jca 306 | . 2 ⊢ (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧))) |
| 12 | bj-om 16300 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝐴 = ω ↔ (Ind 𝐴 ∧ ∀𝑧(Ind 𝑧 → 𝐴 ⊆ 𝑧)))) | |
| 13 | 11, 12 | imbitrrid 156 | 1 ⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 ∈ 𝐴 ↔ (𝑥 = ∅ ∨ ∃𝑦 ∈ 𝐴 𝑥 = suc 𝑦)) → 𝐴 = ω)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 713 ∀wal 1393 = wceq 1395 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 ∅c0 3491 suc csuc 4456 ωcom 4682 BOUNDED wbdc 16203 Ind wind 16289 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-nul 4210 ax-pr 4293 ax-un 4524 ax-bd0 16176 ax-bdim 16177 ax-bdor 16179 ax-bdex 16182 ax-bdeq 16183 ax-bdel 16184 ax-bdsb 16185 ax-bdsep 16247 ax-bdsetind 16331 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-sn 3672 df-pr 3673 df-uni 3889 df-int 3924 df-suc 4462 df-iom 4683 df-bdc 16204 df-bj-ind 16290 |
| This theorem is referenced by: bj-omex2 16340 bj-nn0sucALT 16341 |
| Copyright terms: Public domain | W3C validator |