Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdvsn GIF version

Theorem bdvsn 15944
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdvsn BOUNDED 𝑥 = {𝑦}
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdvsn
StepHypRef Expression
1 bdcsn 15940 . . . 4 BOUNDED {𝑦}
21bdss 15934 . . 3 BOUNDED 𝑥 ⊆ {𝑦}
3 bdcv 15918 . . . 4 BOUNDED 𝑥
43bdsnss 15943 . . 3 BOUNDED {𝑦} ⊆ 𝑥
52, 4ax-bdan 15885 . 2 BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)
6 eqss 3212 . 2 (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥))
75, 6bd0r 15895 1 BOUNDED 𝑥 = {𝑦}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1373  wss 3170  {csn 3637  BOUNDED wbd 15882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188  ax-bd0 15883  ax-bdan 15885  ax-bdal 15888  ax-bdeq 15890  ax-bdel 15891  ax-bdsb 15892
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-in 3176  df-ss 3183  df-sn 3643  df-bdc 15911
This theorem is referenced by:  bdop  15945
  Copyright terms: Public domain W3C validator