| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdvsn | GIF version | ||
| Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdvsn | ⊢ BOUNDED 𝑥 = {𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcsn 16163 | . . . 4 ⊢ BOUNDED {𝑦} | |
| 2 | 1 | bdss 16157 | . . 3 ⊢ BOUNDED 𝑥 ⊆ {𝑦} |
| 3 | bdcv 16141 | . . . 4 ⊢ BOUNDED 𝑥 | |
| 4 | 3 | bdsnss 16166 | . . 3 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
| 5 | 2, 4 | ax-bdan 16108 | . 2 ⊢ BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥) |
| 6 | eqss 3239 | . 2 ⊢ (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)) | |
| 7 | 5, 6 | bd0r 16118 | 1 ⊢ BOUNDED 𝑥 = {𝑦} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1395 ⊆ wss 3197 {csn 3666 BOUNDED wbd 16105 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-bd0 16106 ax-bdan 16108 ax-bdal 16111 ax-bdeq 16113 ax-bdel 16114 ax-bdsb 16115 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-sn 3672 df-bdc 16134 |
| This theorem is referenced by: bdop 16168 |
| Copyright terms: Public domain | W3C validator |