Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdvsn GIF version

Theorem bdvsn 16167
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdvsn BOUNDED 𝑥 = {𝑦}
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdvsn
StepHypRef Expression
1 bdcsn 16163 . . . 4 BOUNDED {𝑦}
21bdss 16157 . . 3 BOUNDED 𝑥 ⊆ {𝑦}
3 bdcv 16141 . . . 4 BOUNDED 𝑥
43bdsnss 16166 . . 3 BOUNDED {𝑦} ⊆ 𝑥
52, 4ax-bdan 16108 . 2 BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)
6 eqss 3239 . 2 (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥))
75, 6bd0r 16118 1 BOUNDED 𝑥 = {𝑦}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1395  wss 3197  {csn 3666  BOUNDED wbd 16105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-bd0 16106  ax-bdan 16108  ax-bdal 16111  ax-bdeq 16113  ax-bdel 16114  ax-bdsb 16115
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672  df-bdc 16134
This theorem is referenced by:  bdop  16168
  Copyright terms: Public domain W3C validator