Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdvsn GIF version

Theorem bdvsn 13909
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdvsn BOUNDED 𝑥 = {𝑦}
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdvsn
StepHypRef Expression
1 bdcsn 13905 . . . 4 BOUNDED {𝑦}
21bdss 13899 . . 3 BOUNDED 𝑥 ⊆ {𝑦}
3 bdcv 13883 . . . 4 BOUNDED 𝑥
43bdsnss 13908 . . 3 BOUNDED {𝑦} ⊆ 𝑥
52, 4ax-bdan 13850 . 2 BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)
6 eqss 3162 . 2 (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥))
75, 6bd0r 13860 1 BOUNDED 𝑥 = {𝑦}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1348  wss 3121  {csn 3583  BOUNDED wbd 13847
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152  ax-bd0 13848  ax-bdan 13850  ax-bdal 13853  ax-bdeq 13855  ax-bdel 13856  ax-bdsb 13857
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-sn 3589  df-bdc 13876
This theorem is referenced by:  bdop  13910
  Copyright terms: Public domain W3C validator