| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdvsn | GIF version | ||
| Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdvsn | ⊢ BOUNDED 𝑥 = {𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcsn 15526 | . . . 4 ⊢ BOUNDED {𝑦} | |
| 2 | 1 | bdss 15520 | . . 3 ⊢ BOUNDED 𝑥 ⊆ {𝑦} |
| 3 | bdcv 15504 | . . . 4 ⊢ BOUNDED 𝑥 | |
| 4 | 3 | bdsnss 15529 | . . 3 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
| 5 | 2, 4 | ax-bdan 15471 | . 2 ⊢ BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥) |
| 6 | eqss 3199 | . 2 ⊢ (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)) | |
| 7 | 5, 6 | bd0r 15481 | 1 ⊢ BOUNDED 𝑥 = {𝑦} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1364 ⊆ wss 3157 {csn 3623 BOUNDED wbd 15468 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15469 ax-bdan 15471 ax-bdal 15474 ax-bdeq 15476 ax-bdel 15477 ax-bdsb 15478 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-sn 3629 df-bdc 15497 |
| This theorem is referenced by: bdop 15531 |
| Copyright terms: Public domain | W3C validator |