![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bdvsn | GIF version |
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
Ref | Expression |
---|---|
bdvsn | ⊢ BOUNDED 𝑥 = {𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bdcsn 15483 | . . . 4 ⊢ BOUNDED {𝑦} | |
2 | 1 | bdss 15477 | . . 3 ⊢ BOUNDED 𝑥 ⊆ {𝑦} |
3 | bdcv 15461 | . . . 4 ⊢ BOUNDED 𝑥 | |
4 | 3 | bdsnss 15486 | . . 3 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
5 | 2, 4 | ax-bdan 15428 | . 2 ⊢ BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥) |
6 | eqss 3198 | . 2 ⊢ (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)) | |
7 | 5, 6 | bd0r 15438 | 1 ⊢ BOUNDED 𝑥 = {𝑦} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ⊆ wss 3157 {csn 3622 BOUNDED wbd 15425 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-bd0 15426 ax-bdan 15428 ax-bdal 15431 ax-bdeq 15433 ax-bdel 15434 ax-bdsb 15435 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-in 3163 df-ss 3170 df-sn 3628 df-bdc 15454 |
This theorem is referenced by: bdop 15488 |
Copyright terms: Public domain | W3C validator |