Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdvsn GIF version

Theorem bdvsn 13756
Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.)
Assertion
Ref Expression
bdvsn BOUNDED 𝑥 = {𝑦}
Distinct variable group:   𝑥,𝑦

Proof of Theorem bdvsn
StepHypRef Expression
1 bdcsn 13752 . . . 4 BOUNDED {𝑦}
21bdss 13746 . . 3 BOUNDED 𝑥 ⊆ {𝑦}
3 bdcv 13730 . . . 4 BOUNDED 𝑥
43bdsnss 13755 . . 3 BOUNDED {𝑦} ⊆ 𝑥
52, 4ax-bdan 13697 . 2 BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)
6 eqss 3157 . 2 (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥))
75, 6bd0r 13707 1 BOUNDED 𝑥 = {𝑦}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wss 3116  {csn 3576  BOUNDED wbd 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-bd0 13695  ax-bdan 13697  ax-bdal 13700  ax-bdeq 13702  ax-bdel 13703  ax-bdsb 13704
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582  df-bdc 13723
This theorem is referenced by:  bdop  13757
  Copyright terms: Public domain W3C validator