| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bdvsn | GIF version | ||
| Description: Equality of a setvar with a singleton of a setvar is a bounded formula. (Contributed by BJ, 16-Oct-2019.) |
| Ref | Expression |
|---|---|
| bdvsn | ⊢ BOUNDED 𝑥 = {𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bdcsn 15940 | . . . 4 ⊢ BOUNDED {𝑦} | |
| 2 | 1 | bdss 15934 | . . 3 ⊢ BOUNDED 𝑥 ⊆ {𝑦} |
| 3 | bdcv 15918 | . . . 4 ⊢ BOUNDED 𝑥 | |
| 4 | 3 | bdsnss 15943 | . . 3 ⊢ BOUNDED {𝑦} ⊆ 𝑥 |
| 5 | 2, 4 | ax-bdan 15885 | . 2 ⊢ BOUNDED (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥) |
| 6 | eqss 3212 | . 2 ⊢ (𝑥 = {𝑦} ↔ (𝑥 ⊆ {𝑦} ∧ {𝑦} ⊆ 𝑥)) | |
| 7 | 5, 6 | bd0r 15895 | 1 ⊢ BOUNDED 𝑥 = {𝑦} |
| Colors of variables: wff set class |
| Syntax hints: ∧ wa 104 = wceq 1373 ⊆ wss 3170 {csn 3637 BOUNDED wbd 15882 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 ax-bd0 15883 ax-bdan 15885 ax-bdal 15888 ax-bdeq 15890 ax-bdel 15891 ax-bdsb 15892 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-v 2775 df-in 3176 df-ss 3183 df-sn 3643 df-bdc 15911 |
| This theorem is referenced by: bdop 15945 |
| Copyright terms: Public domain | W3C validator |