Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsepnfALT GIF version

Theorem bdsepnfALT 15994
Description: Alternate proof of bdsepnf 15993, not using bdsepnft 15992. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bdsepnf.nf 𝑏𝜑
bdsepnf.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsepnfALT 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Distinct variable group:   𝑎,𝑏,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)

Proof of Theorem bdsepnfALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdsepnf.1 . . 3 BOUNDED 𝜑
21bdsep2 15991 . 2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑎𝜑))
3 nfv 1552 . . . . 5 𝑏 𝑥𝑦
4 nfv 1552 . . . . . 6 𝑏 𝑥𝑎
5 bdsepnf.nf . . . . . 6 𝑏𝜑
64, 5nfan 1589 . . . . 5 𝑏(𝑥𝑎𝜑)
73, 6nfbi 1613 . . . 4 𝑏(𝑥𝑦 ↔ (𝑥𝑎𝜑))
87nfal 1600 . . 3 𝑏𝑥(𝑥𝑦 ↔ (𝑥𝑎𝜑))
9 nfv 1552 . . 3 𝑦𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
10 elequ2 2182 . . . . 5 (𝑦 = 𝑏 → (𝑥𝑦𝑥𝑏))
1110bibi1d 233 . . . 4 (𝑦 = 𝑏 → ((𝑥𝑦 ↔ (𝑥𝑎𝜑)) ↔ (𝑥𝑏 ↔ (𝑥𝑎𝜑))))
1211albidv 1848 . . 3 (𝑦 = 𝑏 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑎𝜑)) ↔ ∀𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))))
138, 9, 12cbvex 1780 . 2 (∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑎𝜑)) ↔ ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑)))
142, 13mpbi 145 1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1371  wnf 1484  wex 1516  BOUNDED wbd 15917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-bdsep 15989
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-cleq 2199  df-clel 2202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator