Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bdsepnfALT GIF version

Theorem bdsepnfALT 14802
Description: Alternate proof of bdsepnf 14801, not using bdsepnft 14800. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
bdsepnf.nf 𝑏𝜑
bdsepnf.1 BOUNDED 𝜑
Assertion
Ref Expression
bdsepnfALT 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Distinct variable group:   𝑎,𝑏,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑎,𝑏)

Proof of Theorem bdsepnfALT
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 bdsepnf.1 . . 3 BOUNDED 𝜑
21bdsep2 14799 . 2 𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑎𝜑))
3 nfv 1528 . . . . 5 𝑏 𝑥𝑦
4 nfv 1528 . . . . . 6 𝑏 𝑥𝑎
5 bdsepnf.nf . . . . . 6 𝑏𝜑
64, 5nfan 1565 . . . . 5 𝑏(𝑥𝑎𝜑)
73, 6nfbi 1589 . . . 4 𝑏(𝑥𝑦 ↔ (𝑥𝑎𝜑))
87nfal 1576 . . 3 𝑏𝑥(𝑥𝑦 ↔ (𝑥𝑎𝜑))
9 nfv 1528 . . 3 𝑦𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
10 elequ2 2153 . . . . 5 (𝑦 = 𝑏 → (𝑥𝑦𝑥𝑏))
1110bibi1d 233 . . . 4 (𝑦 = 𝑏 → ((𝑥𝑦 ↔ (𝑥𝑎𝜑)) ↔ (𝑥𝑏 ↔ (𝑥𝑎𝜑))))
1211albidv 1824 . . 3 (𝑦 = 𝑏 → (∀𝑥(𝑥𝑦 ↔ (𝑥𝑎𝜑)) ↔ ∀𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))))
138, 9, 12cbvex 1756 . 2 (∃𝑦𝑥(𝑥𝑦 ↔ (𝑥𝑎𝜑)) ↔ ∃𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑)))
142, 13mpbi 145 1 𝑏𝑥(𝑥𝑏 ↔ (𝑥𝑎𝜑))
Colors of variables: wff set class
Syntax hints:  wa 104  wb 105  wal 1351  wnf 1460  wex 1492  BOUNDED wbd 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-bdsep 14797
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-cleq 2170  df-clel 2173
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator