Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intnexr GIF version

Theorem bj-intnexr 13944
Description: intnexr 4137 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-intnexr ( 𝐴 = V → ¬ 𝐴 ∈ V)

Proof of Theorem bj-intnexr
StepHypRef Expression
1 bj-vprc 13931 . 2 ¬ V ∈ V
2 eleq1 2233 . 2 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
31, 2mtbiri 670 1 ( 𝐴 = V → ¬ 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1348  wcel 2141  Vcvv 2730   cint 3831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-13 2143  ax-14 2144  ax-ext 2152  ax-bdn 13852  ax-bdel 13856  ax-bdsep 13919
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator