| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intnexr | GIF version | ||
| Description: intnexr 4185 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-intnexr | ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-vprc 15552 | . 2 ⊢ ¬ V ∈ V | |
| 2 | eleq1 2259 | . 2 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
| 3 | 1, 2 | mtbiri 676 | 1 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ∩ cint 3875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-13 2169 ax-14 2170 ax-ext 2178 ax-bdn 15473 ax-bdel 15477 ax-bdsep 15540 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |