| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intnexr | GIF version | ||
| Description: intnexr 4234 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-intnexr | ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-vprc 16217 | . 2 ⊢ ¬ V ∈ V | |
| 2 | eleq1 2292 | . 2 ⊢ (∩ 𝐴 = V → (∩ 𝐴 ∈ V ↔ V ∈ V)) | |
| 3 | 1, 2 | mtbiri 679 | 1 ⊢ (∩ 𝐴 = V → ¬ ∩ 𝐴 ∈ V) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ∩ cint 3922 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-5 1493 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-13 2202 ax-14 2203 ax-ext 2211 ax-bdn 16138 ax-bdel 16142 ax-bdsep 16205 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-v 2801 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |