Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intnexr GIF version

Theorem bj-intnexr 16230
Description: intnexr 4234 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-intnexr ( 𝐴 = V → ¬ 𝐴 ∈ V)

Proof of Theorem bj-intnexr
StepHypRef Expression
1 bj-vprc 16217 . 2 ¬ V ∈ V
2 eleq1 2292 . 2 ( 𝐴 = V → ( 𝐴 ∈ V ↔ V ∈ V))
31, 2mtbiri 679 1 ( 𝐴 = V → ¬ 𝐴 ∈ V)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wcel 2200  Vcvv 2799   cint 3922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-5 1493  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-13 2202  ax-14 2203  ax-ext 2211  ax-bdn 16138  ax-bdel 16142  ax-bdsep 16205
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-v 2801
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator