Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intexr GIF version

Theorem bj-intexr 16181
Description: intexr 4213 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-intexr ( 𝐴 ∈ V → 𝐴 ≠ ∅)

Proof of Theorem bj-intexr
StepHypRef Expression
1 bj-vprc 16169 . . 3 ¬ V ∈ V
2 inteq 3905 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 3916 . . . . 5 ∅ = V
42, 3eqtrdi 2258 . . . 4 (𝐴 = ∅ → 𝐴 = V)
54eleq1d 2278 . . 3 (𝐴 = ∅ → ( 𝐴 ∈ V ↔ V ∈ V))
61, 5mtbiri 679 . 2 (𝐴 = ∅ → ¬ 𝐴 ∈ V)
76necon2ai 2434 1 ( 𝐴 ∈ V → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1375  wcel 2180  wne 2380  Vcvv 2779  c0 3471   cint 3902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-bdn 16090  ax-bdel 16094  ax-bdsep 16157
This theorem depends on definitions:  df-bi 117  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-v 2781  df-dif 3179  df-nul 3472  df-int 3903
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator