![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intexr | GIF version |
Description: intexr 4179 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-intexr | ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-vprc 15388 | . . 3 ⊢ ¬ V ∈ V | |
2 | inteq 3873 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
3 | int0 3884 | . . . . 5 ⊢ ∩ ∅ = V | |
4 | 2, 3 | eqtrdi 2242 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
5 | 4 | eleq1d 2262 | . . 3 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
6 | 1, 5 | mtbiri 676 | . 2 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
7 | 6 | necon2ai 2418 | 1 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2164 ≠ wne 2364 Vcvv 2760 ∅c0 3446 ∩ cint 3870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-bdn 15309 ax-bdel 15313 ax-bdsep 15376 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-v 2762 df-dif 3155 df-nul 3447 df-int 3871 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |