Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intexr GIF version

Theorem bj-intexr 15057
Description: intexr 4165 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-intexr ( 𝐴 ∈ V → 𝐴 ≠ ∅)

Proof of Theorem bj-intexr
StepHypRef Expression
1 bj-vprc 15045 . . 3 ¬ V ∈ V
2 inteq 3862 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 3873 . . . . 5 ∅ = V
42, 3eqtrdi 2238 . . . 4 (𝐴 = ∅ → 𝐴 = V)
54eleq1d 2258 . . 3 (𝐴 = ∅ → ( 𝐴 ∈ V ↔ V ∈ V))
61, 5mtbiri 676 . 2 (𝐴 = ∅ → ¬ 𝐴 ∈ V)
76necon2ai 2414 1 ( 𝐴 ∈ V → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2160  wne 2360  Vcvv 2752  c0 3437   cint 3859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-bdn 14966  ax-bdel 14970  ax-bdsep 15033
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-v 2754  df-dif 3146  df-nul 3438  df-int 3860
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator