Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-intexr GIF version

Theorem bj-intexr 14800
Description: intexr 4152 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-intexr ( 𝐴 ∈ V → 𝐴 ≠ ∅)

Proof of Theorem bj-intexr
StepHypRef Expression
1 bj-vprc 14788 . . 3 ¬ V ∈ V
2 inteq 3849 . . . . 5 (𝐴 = ∅ → 𝐴 = ∅)
3 int0 3860 . . . . 5 ∅ = V
42, 3eqtrdi 2226 . . . 4 (𝐴 = ∅ → 𝐴 = V)
54eleq1d 2246 . . 3 (𝐴 = ∅ → ( 𝐴 ∈ V ↔ V ∈ V))
61, 5mtbiri 675 . 2 (𝐴 = ∅ → ¬ 𝐴 ∈ V)
76necon2ai 2401 1 ( 𝐴 ∈ V → 𝐴 ≠ ∅)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1353  wcel 2148  wne 2347  Vcvv 2739  c0 3424   cint 3846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-bdn 14709  ax-bdel 14713  ax-bdsep 14776
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-v 2741  df-dif 3133  df-nul 3425  df-int 3847
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator