| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intexr | GIF version | ||
| Description: intexr 4213 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-intexr | ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-vprc 16169 | . . 3 ⊢ ¬ V ∈ V | |
| 2 | inteq 3905 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
| 3 | int0 3916 | . . . . 5 ⊢ ∩ ∅ = V | |
| 4 | 2, 3 | eqtrdi 2258 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
| 5 | 4 | eleq1d 2278 | . . 3 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
| 6 | 1, 5 | mtbiri 679 | . 2 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
| 7 | 6 | necon2ai 2434 | 1 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1375 ∈ wcel 2180 ≠ wne 2380 Vcvv 2779 ∅c0 3471 ∩ cint 3902 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-bdn 16090 ax-bdel 16094 ax-bdsep 16157 |
| This theorem depends on definitions: df-bi 117 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-v 2781 df-dif 3179 df-nul 3472 df-int 3903 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |