![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-intexr | GIF version |
Description: intexr 3986 from bounded separation. (Contributed by BJ, 18-Nov-2019.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-intexr | ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-vprc 11787 | . . 3 ⊢ ¬ V ∈ V | |
2 | inteq 3691 | . . . . 5 ⊢ (𝐴 = ∅ → ∩ 𝐴 = ∩ ∅) | |
3 | int0 3702 | . . . . 5 ⊢ ∩ ∅ = V | |
4 | 2, 3 | syl6eq 2136 | . . . 4 ⊢ (𝐴 = ∅ → ∩ 𝐴 = V) |
5 | 4 | eleq1d 2156 | . . 3 ⊢ (𝐴 = ∅ → (∩ 𝐴 ∈ V ↔ V ∈ V)) |
6 | 1, 5 | mtbiri 635 | . 2 ⊢ (𝐴 = ∅ → ¬ ∩ 𝐴 ∈ V) |
7 | 6 | necon2ai 2309 | 1 ⊢ (∩ 𝐴 ∈ V → 𝐴 ≠ ∅) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1289 ∈ wcel 1438 ≠ wne 2255 Vcvv 2619 ∅c0 3286 ∩ cint 3688 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-bdn 11708 ax-bdel 11712 ax-bdsep 11775 |
This theorem depends on definitions: df-bi 115 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-ral 2364 df-v 2621 df-dif 3001 df-nul 3287 df-int 3689 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |