Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-zfpair2 GIF version

Theorem bj-zfpair2 15779
Description: Proof of zfpair2 4253 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-zfpair2 {𝑥, 𝑦} ∈ V

Proof of Theorem bj-zfpair2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-bdeq 15689 . . . . 5 BOUNDED 𝑤 = 𝑥
2 ax-bdeq 15689 . . . . 5 BOUNDED 𝑤 = 𝑦
31, 2ax-bdor 15685 . . . 4 BOUNDED (𝑤 = 𝑥𝑤 = 𝑦)
4 ax-pr 4252 . . . 4 𝑧𝑤((𝑤 = 𝑥𝑤 = 𝑦) → 𝑤𝑧)
53, 4bdbm1.3ii 15760 . . 3 𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦))
6 dfcleq 2198 . . . . 5 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}))
7 vex 2774 . . . . . . . 8 𝑤 ∈ V
87elpr 3653 . . . . . . 7 (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥𝑤 = 𝑦))
98bibi2i 227 . . . . . 6 ((𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
109albii 1492 . . . . 5 (∀𝑤(𝑤𝑧𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
116, 10bitri 184 . . . 4 (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
1211exbii 1627 . . 3 (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧𝑤(𝑤𝑧 ↔ (𝑤 = 𝑥𝑤 = 𝑦)))
135, 12mpbir 146 . 2 𝑧 𝑧 = {𝑥, 𝑦}
1413issetri 2780 1 {𝑥, 𝑦} ∈ V
Colors of variables: wff set class
Syntax hints:  wb 105  wo 709  wal 1370   = wceq 1372  wex 1514  wcel 2175  Vcvv 2771  {cpr 3633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-pr 4252  ax-bdor 15685  ax-bdeq 15689  ax-bdsep 15753
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639
This theorem is referenced by:  bj-prexg  15780
  Copyright terms: Public domain W3C validator