| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > bj-zfpair2 | GIF version | ||
| Description: Proof of zfpair2 4265 using only bounded separation. (Contributed by BJ, 5-Oct-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-zfpair2 | ⊢ {𝑥, 𝑦} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-bdeq 15925 | . . . . 5 ⊢ BOUNDED 𝑤 = 𝑥 | |
| 2 | ax-bdeq 15925 | . . . . 5 ⊢ BOUNDED 𝑤 = 𝑦 | |
| 3 | 1, 2 | ax-bdor 15921 | . . . 4 ⊢ BOUNDED (𝑤 = 𝑥 ∨ 𝑤 = 𝑦) |
| 4 | ax-pr 4264 | . . . 4 ⊢ ∃𝑧∀𝑤((𝑤 = 𝑥 ∨ 𝑤 = 𝑦) → 𝑤 ∈ 𝑧) | |
| 5 | 3, 4 | bdbm1.3ii 15996 | . . 3 ⊢ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
| 6 | dfcleq 2200 | . . . . 5 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦})) | |
| 7 | vex 2776 | . . . . . . . 8 ⊢ 𝑤 ∈ V | |
| 8 | 7 | elpr 3659 | . . . . . . 7 ⊢ (𝑤 ∈ {𝑥, 𝑦} ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦)) |
| 9 | 8 | bibi2i 227 | . . . . . 6 ⊢ ((𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ (𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 10 | 9 | albii 1494 | . . . . 5 ⊢ (∀𝑤(𝑤 ∈ 𝑧 ↔ 𝑤 ∈ {𝑥, 𝑦}) ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 11 | 6, 10 | bitri 184 | . . . 4 ⊢ (𝑧 = {𝑥, 𝑦} ↔ ∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 12 | 11 | exbii 1629 | . . 3 ⊢ (∃𝑧 𝑧 = {𝑥, 𝑦} ↔ ∃𝑧∀𝑤(𝑤 ∈ 𝑧 ↔ (𝑤 = 𝑥 ∨ 𝑤 = 𝑦))) |
| 13 | 5, 12 | mpbir 146 | . 2 ⊢ ∃𝑧 𝑧 = {𝑥, 𝑦} |
| 14 | 13 | issetri 2783 | 1 ⊢ {𝑥, 𝑦} ∈ V |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∨ wo 710 ∀wal 1371 = wceq 1373 ∃wex 1516 ∈ wcel 2177 Vcvv 2773 {cpr 3639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-pr 4264 ax-bdor 15921 ax-bdeq 15925 ax-bdsep 15989 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-v 2775 df-un 3174 df-sn 3644 df-pr 3645 |
| This theorem is referenced by: bj-prexg 16016 |
| Copyright terms: Public domain | W3C validator |